Zobrazeno 1 - 10
of 20 657
pro vyhledávání: '"Michalewicz, A"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We propose the $\textit{lifted linear model}$, and derive model-free prediction intervals that become tighter as the correlation between predictions and observations increases. These intervals motivate the $\textit{Lifted Coefficient of Determination
Externí odkaz:
http://arxiv.org/abs/2410.08958
The high binding affinity of antibodies towards their cognate targets is key to eliciting effective immune responses, as well as to the use of antibodies as research and therapeutic tools. Here, we propose ANTIPASTI, a Convolutional Neural Network mo
Externí odkaz:
http://arxiv.org/abs/2410.01523
Publikováno v:
The Astronomical Journal, Volume 168, Issue 2, id.55, 15 pp, 2024
We present STARRED, a Point Spread Function (PSF) reconstruction, two-channel deconvolution, and light curve extraction method designed for high-precision photometric measurements in imaging time series. An improved resolution of the data is targeted
Externí odkaz:
http://arxiv.org/abs/2402.08725
Autor:
Hanks, Patrick, Lenarčič, Simon
Publikováno v:
Dictionary of American Family Names, 2 ed., 2022.
Publikováno v:
Journal of Open Source Software (2023), 8(85), 5340
The spatial resolution of astronomical images is limited by atmospheric turbulence and diffraction in the telescope optics, resulting in blurred images. This makes it difficult to accurately measure the brightness of blended objects because the contr
Externí odkaz:
http://arxiv.org/abs/2305.18526
Autor:
Besta, Maciej, Gerstenberger, Robert, Fischer, Marc, Podstawski, Michał, Blach, Nils, Egeli, Berke, Mitenkov, Georgy, Chlapek, Wojciech, Michalewicz, Marek, Niewiadomski, Hubert, Müller, Jürgen, Hoefler, Torsten
Publikováno v:
Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, 2023 (SC '23)
Graph databases (GDBs) are crucial in academic and industry applications. The key challenges in developing GDBs are achieving high performance, scalability, programmability, and portability. To tackle these challenges, we harness established practice
Externí odkaz:
http://arxiv.org/abs/2305.11162
Autor:
Michalewicz, Marek
In 2015 the Interdisciplinary Centre for Mathematical and Computational Modelling (ICM), University of Warsaw built a modern datacenter and installed three substantial HPC systems as part of a 168 M PLN (36 M Euro) OCEAN project. Some of the systems
Externí odkaz:
http://arxiv.org/abs/2305.01800
Autor:
Michalewicz, Zbigniew1 (AUTHOR) zm@complexica.com
Publikováno v:
Evolutionary Computation. Summer2023, Vol. 31 Issue 2, p123-155. 33p.
Autor:
da Silva, Rafael Ferreira, Badia, Rosa M., Bala, Venkat, Bard, Debbie, Bremer, Peer-Timo, Buckley, Ian, Caino-Lores, Silvina, Chard, Kyle, Goble, Carole, Jha, Shantenu, Katz, Daniel S., Laney, Daniel, Parashar, Manish, Suter, Frederic, Tyler, Nick, Uram, Thomas, Altintas, Ilkay, Andersson, Stefan, Arndt, William, Aznar, Juan, Bader, Jonathan, Balis, Bartosz, Blanton, Chris, Braghetto, Kelly Rosa, Brodutch, Aharon, Brunk, Paul, Casanova, Henri, Lierta, Alba Cervera, Chigu, Justin, Coleman, Taina, Collier, Nick, Colonnelli, Iacopo, Coppens, Frederik, Crusoe, Michael, Cunningham, Will, Kinoshita, Bruno de Paula, Di Tommaso, Paolo, Doutriaux, Charles, Downton, Matthew, Elwasif, Wael, Enders, Bjoern, Erdmann, Chris, Fahringer, Thomas, Figueiredo, Ludmilla, Filgueira, Rosa, Foltin, Martin, Fouilloux, Anne, Gadelha, Luiz, Gallo, Andy, Saez, Artur Garcia, Garijo, Daniel, Gerlach, Roman, Grant, Ryan, Grayson, Samuel, Grubel, Patricia, Gustafsson, Johan, Hayot-Sasson, Valerie, Hernandez, Oscar, Hilbrich, Marcus, Justine, AnnMary, Laflotte, Ian, Lehmann, Fabian, Luckow, Andre, Luettgau, Jakob, Maheshwari, Ketan, Matsuda, Motohiko, Medic, Doriana, Mendygral, Pete, Michalewicz, Marek, Nonaka, Jorji, Pawlik, Maciej, Pottier, Loic, Pouchard, Line, Putz, Mathias, Radha, Santosh Kumar, Ramakrishnan, Lavanya, Ristov, Sashko, Romano, Paul, Rosendo, Daniel, Ruefenacht, Martin, Rycerz, Katarzyna, Saurabh, Nishant, Savchenko, Volodymyr, Schulz, Martin, Simpson, Christine, Sirvent, Raul, Skluzacek, Tyler, Soiland-Reyes, Stian, Souza, Renan, Sukumar, Sreenivas Rangan, Sun, Ziheng, Sussman, Alan, Thain, Douglas, Titov, Mikhail, Tovar, Benjamin, Tripathy, Aalap, Turilli, Matteo, Tuznik, Bartosz, van Dam, Hubertus, Vivas, Aurelio, Ward, Logan, Widener, Patrick, Wilkinson, Sean, Zawalska, Justyna, Zulfiqar, Mahnoor
Scientific workflows have become integral tools in broad scientific computing use cases. Science discovery is increasingly dependent on workflows to orchestrate large and complex scientific experiments that range from execution of a cloud-based data
Externí odkaz:
http://arxiv.org/abs/2304.00019