Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Michal Doucha"'
Publikováno v:
Collectanea Mathematica. 73:337-357
Our aim in this article is to contribute to the theory of Lipschitz free p-spaces for $$0
Publikováno v:
Journal of Mathematical Logic. 23
We generalize the notion of analytic/Borel equivalence relations, orbit equivalence relations, and Borel reductions between them to their continuous and quantitative counterparts: analytic/Borel pseudometrics, orbit pseudometrics, and Borel reduction
Publikováno v:
Israel Journal of Mathematics. 240:65-98
F. Albiac acknowledges the support of the Spanish Ministry for Economy and Competitivity Grants MTM2014-53009-P for Analisis Vectorial, Multilineal y Aplicaciones, and MTM2016-76808-P for Operators, lattices, and structure of Banach spaces as well as
Autor:
Michal Doucha
Publikováno v:
Israel Journal of Mathematics. 231:343-377
We construct a universal action of a countable locally finite group (the Hall's group) on a separable metric space by isometries. This single action contains all actions of all countable locally finite groups on all separable metric spaces as subacti
Publikováno v:
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
instname
instname
We find general conditions under which Lipschitz-free spaces over metric spaces are isomorphic to their infinite direct _1-sum and exhibit several applications. As examples of such applications we have that Lipschitz-free spaces over balls and sphere
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::98f6c7f4c2eb99dd58fb50d1db223e72
https://hdl.handle.net/2454/41919
https://hdl.handle.net/2454/41919
Publikováno v:
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
instname
instname
We investigate a way to turn an arbitrary (usually, unbounded) metric space M into a bounded metric space B in such a way that the corresponding Lipschitz-free spaces F(M) and F(B) are isomorphic. The construction we provide is functorial in a weak s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4f602e86faca99e29239ee96abcd98a6
http://arxiv.org/abs/2011.12993
http://arxiv.org/abs/2011.12993
We initiate the large scale geometric study of Banach-Lie groups, especially of linear Banach-Lie groups. We show that the exponential length, originally introduced by Ringrose for unitary groups of $C^*$-algebras, defines the quasi-isometry type of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a432a3b6783bd34790e13db620a102ab
We show that all the standard distances from metric geometry and functional analysis, such as Gromov-Hausdorff distance, Banach-Mazur distance, Kadets distance, Lipschitz distance, Net distance, and Hausdorff-Lipschitz distance have all the same comp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::30c48d566c3a8b3cfbdd80d75b4ece11
Publikováno v:
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
instname
instname
Our goal in this paper is to continue the study initiated by the authors in of the geometry of the Lipschitz free p-spaces over quasimetric spaces for 0 < p ≤ 1, denoted Fp(M). Here we develop new techniques to show that, by analogy with the case p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::001c69ca25d3598fb99cf94ff4438a52
https://hdl.handle.net/2454/36849
https://hdl.handle.net/2454/36849
Publikováno v:
Journal of Group Theory. 22:1-13
Let G be a discrete group with Property (T). It is a standard fact that, in a unitary representation of G on a Hilbert space ℋ {\mathcal{H}} , almost invariant vectors are close to invariant vectors, in a quantitative way. We begin by showing that,