Zobrazeno 1 - 10
of 73
pro vyhledávání: '"Michael Sternberg"'
Autor:
Sukriti Manna, Troy D. Loeffler, Rohit Batra, Suvo Banik, Henry Chan, Bilvin Varughese, Kiran Sasikumar, Michael Sternberg, Tom Peterka, Mathew J. Cherukara, Stephen K. Gray, Bobby G. Sumpter, Subramanian K. R. S. Sankaranarayanan
Publikováno v:
Nature Communications, Vol 13, Iss 1, Pp 1-10 (2022)
Reinforcement learning algorithms are emerging as powerful machine learning approaches. This paper introduces a novel machine-learning approach for learning in continuous action space and applies this strategy to the generation of high dimensional po
Externí odkaz:
https://doaj.org/article/856fb35b358a4d51a94ca42f1d112763
Publikováno v:
Intercultural Education. 33:455-469
Autor:
Michael Sternberg, Shifra Sagy
Publikováno v:
Encountering the Suffering of the Other ISBN: 9783525567371
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::0a8a871f9c5e08c2d4d7ed1b942874b9
https://doi.org/10.13109/9783666567377.165
https://doi.org/10.13109/9783666567377.165
Autor:
Aditya Koneru, Rohit Batra, Sukriti Manna, Troy D. Loeffler, Henry Chan, Michael Sternberg, Anthony Avarca, Harpal Singh, Mathew J. Cherukara, Subramanian K. R. S. Sankaranarayanan
Publikováno v:
The Journal of Physical Chemistry Letters. 13:1886-1893
We introduce a multi-reward reinforcement learning (RL) approach to train a flexible bond-order potential (BOP) for 2D phosphorene based on ab initio training data sets. Our approach is based on a continuous action space Monte Carlo tree search algor
Autor:
Zachary D. Hood, Babak Anasori, Brian C. Wyatt, Bowen Zhang, Rasoul Khaledialidusti, Michael Sternberg, Srinivasa Kartik Nemani, Sukriti Manna, Subramanian K. R. S. Sankaranarayanan, Weichen Hong
Publikováno v:
ACS Nano. 15:12815-12825
Two-dimensional (2D) transition metal carbides and nitrides, known as MXenes, are a fast-growing family of 2D materials. MXenes 2D flakes have n + 1 (n = 1-4) atomic layers of transition metals interleaved by carbon/nitrogen layers, but to-date remai
Autor:
Badri Narayanan, Subramanian K. R. S. Sankaranarayanan, Michael Sternberg, Anthony Avarca, Henry Chan, Troy D. Loeffler, Mathew J. Cherukara
Publikováno v:
MRS Advances. 6:21-31
The ever-increasing power of supercomputers coupled with highly scalable simulation codes has made molecular dynamics an indispensable tool in applications ranging from predictive modeling of materials to computational design and discovery of new mat
Autor:
Kevan Michael, Sternberg
Publikováno v:
Urology. 164:86-87
Autor:
Sukriti Manna, Troy D. Loeffler, Rohit Batra, Suvo Banik, Henry Chan, Bilvin Varughese, Kiran Sasikumar, Michael Sternberg, Tom Peterka, Mathew J. Cherukara, Stephen K. Gray, Bobby G. Sumpter, Subramanian K. R. S. Sankaranarayanan
Publikováno v:
Nature Communications
Nature Communications, Vol 13, Iss 1, Pp 1-10 (2022)
Nature Communications, Vol 13, Iss 1, Pp 1-10 (2022)
Reinforcement learning (RL) approaches that combine a tree search with deep learning have found remarkable success in searching exorbitantly large, albeit discrete action spaces, as in chess, Shogi and Go. Many real-world materials discovery and desi
Autor:
Babak Anasori, Srinivasa Kartik Nemani, Subramanian K. R. S. Sankaranarayanan, Zhang B, Michael Sternberg, Rasoul Khaledialidusti, Sukriti Manna, Hood Zd, Hong W, Brian C. Wyatt
Two-dimensional (2D) transition metal carbides and nitrides, known as MXenes, are a fast-growing family of 2D materials. MXenes 2D flakes have n + 1 (n = 1 – 4) atomic layers of transition metals interleaved by carbon/nitrogen layers, but to-date r
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1e4bcc60ae8712fa188b384c57dbeb72
https://doi.org/10.26434/chemrxiv.14346953.v1
https://doi.org/10.26434/chemrxiv.14346953.v1
Autor:
Subramanian K. R. S. Sankaranarayanan, Bobby G. Sumpter, Rohit Batra, Tom Peterka, Michael Sternberg, Suvo Banik, Stephen K. Gray, Kiran Sasikumar, Sukriti Manna, Henry Chan, Troy D. Loeffler, Mathew J. Cherukara
Reinforcement learning (RL) approaches that combine a tree search with deep learning have found remarkable success in searching exorbitantly large, albeit discrete action spaces, as demonstrated recently in board games like chess, Shogi, and Go. Many
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1a303dd906987f3266fef07c70f01d25
https://doi.org/10.21203/rs.3.rs-284625/v1
https://doi.org/10.21203/rs.3.rs-284625/v1