Zobrazeno 1 - 10
of 33
pro vyhledávání: '"Michael Sagraloff"'
Autor:
Ruben Becker, Michael Sagraloff
Publikováno v:
Journal of Symbolic Computation. 120:102222
We propose a symbolic-numeric algorithm to count the number of solutions of a polynomial system within a local region. More specifically, given a zero-dimensional system $f_1=\cdots=f_n=0$, with $f_i\in\mathbb{C}[x_1,\ldots,x_n]$, and a polydisc $\ma
Publikováno v:
Journal of Symbolic Computation. 86:51-96
We describe a subdivision algorithm for isolating the complex roots of a polynomial F ∈ C [ x ] . Given an oracle that provides approximations of each of the coefficients of F to any absolute error bound and given an arbitrary square B in the compl
Autor:
Fabrice Rouillier, Guillaume Moroz, Michael Sagraloff, Sylvain Lazard, Yacine Bouzidi, Marc Pouget
Publikováno v:
Journal of Complexity
Journal of Complexity, Elsevier, 2016, 37, pp.34--75. ⟨10.1016/j.jco.2016.07.002⟩
Journal of Complexity, 2016, 37, pp.34--75. ⟨10.1016/j.jco.2016.07.002⟩
Journal of Complexity, Elsevier, 2016, 37, pp.34--75. ⟨10.1016/j.jco.2016.07.002⟩
Journal of Complexity, 2016, 37, pp.34--75. ⟨10.1016/j.jco.2016.07.002⟩
International audience; Given two coprime polynomials $P$ and $Q$ in $\Z[x,y]$ of degree bounded by $d$ and bitsize bounded by $\tau$, we address the problem of solving the system $\{P,Q\}$. We are interested in certified numerical approximations or,
Publikováno v:
Discrete and Computational Geometry
Discrete and Computational Geometry, 2022, 67, pp.631-697. ⟨10.1007/s00454-021-00353-w⟩
Discrete and Computational Geometry, 2022, 67, pp.631-697. ⟨10.1007/s00454-021-00353-w⟩
International audience; Let $P \in \mathbb{Z} [X, Y]$ be a given square-free polynomial of total degree $d$ with integer coefficients of bitsize less than $\tau$, and let $V_{\mathbb{R}} (P) := \{ (x,y) \in \mathbb{R}^2, P (x,y) = 0 \}$ be the real p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5430bbd0ca400fbb66838ee9cda1fec6
Autor:
Michael Kerber, Michael Sagraloff
Publikováno v:
Journal of Computational and Applied Mathematics. 280:377-395
We consider the problem of approximating all real roots of a square-free polynomial f with real coefficients. Given isolating intervals for the real roots and an arbitrary positive integer L , the task is to approximate each root to L bits after the
Autor:
Michael Sagraloff, Gorav Jindal
Publikováno v:
ISSAC
We propose an efficient algorithm to compute the real roots of a sparse polynomial $f\in\mathbb{R}[x]$ having $k$ non-zero real-valued coefficients. It is assumed that arbitrarily good approximations of the non-zero coefficients are given by means of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6f4ff439f1a06c67a67dbf4b1e32ba32
https://hdl.handle.net/11858/00-001M-0000-002D-8AD3-311858/00-001M-0000-002D-8AD1-7
https://hdl.handle.net/11858/00-001M-0000-002D-8AD3-311858/00-001M-0000-002D-8AD1-7
Autor:
Michael Sagraloff
Publikováno v:
Journal of Symbolic Computation. 65:79-110
In this paper, we introduce a variant of the Descartes method to isolate the real roots of a square-free polynomial F ( x ) = ∑ i = 0 n A i x i with arbitrary real coefficients. It is assumed that each coefficient of F can be approximated to any sp
Publikováno v:
ISSAC
Let $F(z)$ be an arbitrary complex polynomial. We introduce the local root clustering problem, to compute a set of natural $\varepsilon$-clusters of roots of $F(z)$ in some box region $B_0$ in the complex plane. This may be viewed as an extension of
Publikováno v:
ISSAC '16 Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation
ISSAC '16 Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, Jul 2016, Waterloo, Canada. pp.7, ⟨10.1145/2930889.2930937⟩
ISSAC
ISSAC '16 Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, Jul 2016, Waterloo, Canada. pp.7, ⟨10.1145/2930889.2930937⟩
ISSAC
Very recent work introduces an asymptotically fast subdivision algorithm, denoted ANewDsc, for isolating the real roots of a univariate real polynomial. The method combines Descartes' Rule of Signs to test intervals for the existence of roots, Newton
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5bb97a888d6ef582dadea56a16e1f541
https://hal.inria.fr/hal-01363955
https://hal.inria.fr/hal-01363955
Autor:
Michael Sagraloff, Cornelius Brand
Publikováno v:
ISSAC
Given a zero-dimensional polynomial system consisting of n integer polynomials in n variables, we propose a certified and complete method to compute all complex solutions of the system as well as a corresponding separating linear form l with coeffici
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f73b33560c71cb1615e8f8e7cfc72098