Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Michael Roysdon"'
Autor:
Michael Roysdon, Sudan Xing
Publikováno v:
Transactions of the American Mathematical Society. 374:5003-5036
Autor:
María A. Hernández Cifre, David Alonso-Gutiérrez, Jesús Yepes Nicolás, Artem Zvavitch, Michael Roysdon
Publikováno v:
Zaguán. Repositorio Digital de la Universidad de Zaragoza
instname
instname
In this paper we prove a series of Rogers–Shephard type inequalities for convex bodies when dealing with measures on the Euclidean space with either radially decreasing densities or quasi-concave densities attaining their maximum at the origin. Fun
Autor:
Michael Roysdon
Publikováno v:
Journal of Mathematical Analysis and Applications. 487:123958
In this paper we address the following question: given a measure μ on R n , does there exist a constant C > 0 such that, for any m-dimensional subspace H ⊂ R n and any convex body K ⊂ R n , the following sectional Rogers-Shephard type inequality
Autor:
Brauner, Leo, Ortega-Moreno, Oscar
Publikováno v:
Transactions of the American Mathematical Society; Jan2025, Issue 1, p159-199, 41p
Publikováno v:
Proceedings of the London Mathematical Society. 125(5):1083-1129
The inequalities of Petty and Zhang are affine isoperimetric-type inequalities providing sharp bounds for $\text{vol}^{n-1}_{n}(K)\text{vol}_n(\Pi^\circ K),$ where $\Pi K$ is a projection body of a convex body $K$. In this paper, we present a number
Publikováno v:
Mathematics of Computation; Mar2025, Vol. 94 Issue 352, p1003-1042, 40p
Autor:
Roysdon, Michael, Xing, Sudan
Publikováno v:
Transactions of the American Mathematical Society; Jul2021, Vol. 374 Issue 7, p5003-5036, 34p
Autor:
Kryvonos, Liudmyla, Langharst, Dylan
Publikováno v:
Transactions of the American Mathematical Society; Dec2023, Vol. 376 Issue 12, p8447-8493, 47p
Publikováno v:
Proceedings of the London Mathematical Society; Nov2022, Vol. 125 Issue 5, p1083-1129, 47p