Zobrazeno 1 - 10
of 198
pro vyhledávání: '"Michael R. Haberman"'
Publikováno v:
Nature Communications, Vol 11, Iss 1, Pp 1-8 (2020)
Here, the authors experimentally demonstrate abilities of a mechanical Willis meta-layer, in beams and plates, for independently engineering transmission and reflection coefficients of flexural waves in both amplitude and phase and nonreciprocal wave
Externí odkaz:
https://doaj.org/article/fcb7ed0c949c4cf3a8f23cab4a5228d6
Publikováno v:
Nature Communications, Vol 8, Iss 1, Pp 1-9 (2017)
Metamaterials enable the realization of unique material properties such as coupling between strain and momentum in a fluid—known as Willis coupling. Here, Muhlesteinet al. use homogenization theory to better understand Willis coupling in acoustic m
Externí odkaz:
https://doaj.org/article/1f0e9b0f3c3744c19748dde91e2e321d
Autor:
Yangyang Chen, Michael R. Haberman
Publikováno v:
Physical Review Letters. 130
Publikováno v:
2023 17th European Conference on Antennas and Propagation (EuCAP).
Publikováno v:
The Journal of the Acoustical Society of America. 151:216-231
Advancements in additive manufacturing (AM) technology are promising for the creation of acoustic materials. Acoustic metamaterials and metasurfaces are of particular interest for the application of AM technologies as theoretical predictions suggest
Autor:
Colby W. Cushing, Matthew J. Kelsten, Xiaoshi Su, Preston S. Wilson, Michael R. Haberman, Andrew N. Norris
Publikováno v:
The Journal of the Acoustical Society of America. 151:168-179
A metamaterial of particular interest for underwater applications is the three-dimensional (3D) anisotropic pentamode (PM), i.e., a structure designed to support a single longitudinal wave with a sound speed that depends on the propagation direction.
Autor:
Anastasiia O. Krushynska, Daniel Torrent, Alejandro M. Aragón, Raffaele Ardito, Osama R. Bilal, Bernard Bonello, Federico Bosia, Yi Chen, Johan Christensen, Andrea Colombi, Steven A. Cummer, Bahram Djafari-Rouhani, Fernando Fraternali, Pavel I. Galich, Pedro David Garcia, Jean-Philippe Groby, Vincent Tournat, Sebastien Guenneau, Michael R. Haberman, Mahmoud I. Hussein, Shahram Janbaz, Noé Jiménez, Abdelkrim Khelif, Vincent Laude, MohammadJ.Mirzaali, Pawel Packo, Antonio Palermo, Yan Pennec, Rubén Picó, María Rosendo López, Stephan Rudykh, Marc Serra-Garcia, Clivia M. Sotomayor Torres, Timothy A. Starkey, Oliver B. Wright
Publikováno v:
Nanophotonics, 12 (4)
Nanophotonics
Nanophotonics, In press, 28 p. ⟨10.1515/nanoph-2022-0671⟩
Nanophotonics, 12(4)
Nanophotonics, 12 (4), 659-686
Nanophotonics, inPress, 28 p. ⟨10.1515/nanoph-2022-0671⟩
Nanophotonics
Nanophotonics, In press, 28 p. ⟨10.1515/nanoph-2022-0671⟩
Nanophotonics, 12(4)
Nanophotonics, 12 (4), 659-686
Nanophotonics, inPress, 28 p. ⟨10.1515/nanoph-2022-0671⟩
This broad review summarizes recent advances and "hot"research topics in nanophononics and elastic, acoustic, and mechanical metamaterials based on results presented by the authors at the EUROMECH 610 Colloquium held on April 25-27, 2022 in Benicáss
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5bd71b8b45e04257216d3dac685137d0
https://hdl.handle.net/11386/4822211
https://hdl.handle.net/11386/4822211
Autor:
Jaime E. Regis, Luis C. Delfin, Anabel Renteria, Sebastian Vargas, Samuel E. Hall, David Espalin, Luis A. Chavez, Yirong Lin, Michael R. Haberman, Ryan B. Wicker
Publikováno v:
Ceramics International. 47:22042-22048
The additive manufacturing of piezoelectric ceramic Lead Zirconate Titanate (PZT) through paste extrusion 3D printing was demonstrated. Different paste compositions with varied water weight content were studied to find a composition suitable for prin
Publikováno v:
Experimental Mechanics. 61:843-858
Conventional composites used in damping applications exhibit an undesirable tradeoff between stiffness and energy dissipation. Recent research demonstrates that it is possible to simultaneously achieve increased stiffness and energy dissipation for a
Publikováno v:
The Journal of the Acoustical Society of America. 153:A120-A120
Willis materials are metamaterials whose subwavelength asymmetry couples the macroscopic pressure-strain and momentum-velocity relations. Recently, the design space of these metamaterials has been expanded to consider asymmetric piezoelectric scatter