Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Michael J. Scheidler"'
Publikováno v:
Archive of Applied Mechanics. 88:1275-1304
We consider several one-dimensional impact problems involving finite or semi-infinite, linear elastic flyers that collide with and adhere to a finite stationary linear viscoelastic target backed by a semi-infinite linear elastic half-space. The impac
Publikováno v:
International Journal of Solids and Structures. :172-187
We consider the one-dimensional impact problem in which a semi-infinite flyer collides with (and adheres to) the front face of a stationary target plate of finite thickness, with the back face of the target bonded to another semi-infinite medium. All
Publikováno v:
Archive of Applied Mechanics. 86:497-515
We consider the elastodynamic impact problem involving a one-dimensional finite-thickness piezoelectric flyer traveling at initial velocity $$V_0$$ that collides with (and adheres to) a stationary piezoelectric target of finite thickness backed by a
Autor:
Michael J. Scheidler
Publikováno v:
Mathematics and Mechanics of Solids. 1:73-93
For a three-dimensional space, an isotropic tensor-valued function omega of a symmetric tensor A has the representation omega(A) = alpha(A)I + beta(A)A + gamma(A)A2, in which the coefficients alpha, beta, and gamma are isotropic scalar-valued functio
Publikováno v:
Dynamic Behavior of Materials, Volume 1 ISBN: 9781461442370
Numerical simulations of split-Hopkinson pressure bar experiments on soft, nearly-incompressible specimens have been used to validate an “inertial correction” theory for specimens with a bulk-to- shear modulus ratio (κ/μ) on the order of 104. A
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::319ad118400aad0e0642623b8e386910
https://doi.org/10.1007/978-1-4614-4238-7_5
https://doi.org/10.1007/978-1-4614-4238-7_5
Autor:
Michael J. Scheidler
Publikováno v:
Journal of Elasticity. 36:117-153
The (second-order) tensor equation AX+XA=Φ(A,H) is studied for certain isotropic functions Φ(A,H) which are linear in H. Qualitative properties of the solution X and relations between the solutions for various forms of Φ are established for an inn
Autor:
Michael J. Scheidler
Publikováno v:
Mechanics of Materials. 11:199-210
Hill derived a simple component formula for the material time derivative of a generalized Lagrangian strain tensor. We examine Hill's derivation in detail and explain why it is generally valid only when the principal stretches are distinct. We then g
Autor:
Michael J. Scheidler
Publikováno v:
Mechanics of Materials. 11:211-219
Utilizing the component formulas derived in Part 1, we obtain approximate basis-free formulas for the material time derivative of a generalized Lagrangian strain tensor and for the Jaumann rate of a generalized Eulerian strain tensor. These formulas
Each of the two 38 X 38-cm square panels, consisting of 28 plies of plain-woven 600-denier Kevlar KM2 and a Cordura case, was loaded in quasistatic, transverse compression by means of an Instron machine. Constitutive assumptions were introduced to al
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c530c8077385d942ed6d33504dccdbb3
https://doi.org/10.21236/ada430190
https://doi.org/10.21236/ada430190
Autor:
Michael J. Scheidler
Publikováno v:
AIP Conference Proceedings.
For finite deformations of nonlinear viscoelastic solids, the speed of propagation of acceleration waves (i.e., ramp waves) generally depends not only on the current state of strain at the wave front but also on the prior strain history. Consequently