Zobrazeno 1 - 10
of 44
pro vyhledávání: '"Michael Damron"'
Publikováno v:
Random Structures & Algorithms. 59:143-154
Publikováno v:
Communications on Pure and Applied Mathematics. 74:679-743
We provide the first nontrivial upper bound for the chemical distance exponent in two-dimensional critical percolation. Specifically, we prove that the expected length of the shortest horizontal crossing path of a box of side length $n$ in critical p
Publikováno v:
Journal of Statistical Physics. 179:789-807
In independent bond percolation on $${\mathbb {Z}}^d$$ with parameter p, if one removes the vertices of the infinite cluster (and incident edges), for which values of p does the remaining graph contain an infinite connected component? Grimmett-Holroy
Autor:
David Harper, Michael Damron
Publikováno v:
Progress in Probability ISBN: 9783030607531
We study the critical case of first-passage percolation in two dimensions. Letting (te) be i.i.d. nonnegative weights assigned to the edges of \(\mathbb {Z}^2\) with \(\mathbb {P}(t_e=0)=1/2\), consider the induced pseudometric (passage time) T(x, y)
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4a8a1f2b7f50da69df1dbc0b73b29342
https://doi.org/10.1007/978-3-030-60754-8_14
https://doi.org/10.1007/978-3-030-60754-8_14
We consider first-passage percolation (FPP) on the triangular lattice with vertex weights $(t_v)$ whose common distribution function $F$ satisfies $F(0)=1/2$. This is known as the critical case of FPP because large (critical) zero-weight clusters all
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::58b1e316ce90d4374c6e0762c39f978b
http://arxiv.org/abs/1904.12009
http://arxiv.org/abs/1904.12009
Autor:
Michael Damron, Arnab Sen
In zero-temperature Glauber dynamics, vertices of a graph are given i.i.d.~initial spins $\sigma_x(0)$ from $\{-1,+1\}$ with $\mathbb{P}_p(\sigma_x(0) = +1)=p$, and they update their spins at the arrival times of i.i.d. Poisson processes to agree wit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::541e8d2f7a24abc3cb284a48aa207f2a
http://arxiv.org/abs/1904.11625
http://arxiv.org/abs/1904.11625
Autor:
Michael Damron, Jon Fickenscher
If $\mathcal{A}$ is a finite set (alphabet), the shift dynamical system consists of the space $\mathcal{A}^{\mathbb{N}}$ of sequences with entries in $\mathcal{A}$, along with the left shift operator $S$. Closed $S$-invariant subsets are called subsh
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ce1180675a30a85a1e84b10318522057
http://arxiv.org/abs/1902.04619
http://arxiv.org/abs/1902.04619
The Euclidean first-passage percolation model of Howard and Newman is a rotationally invariant percolation model built on a Poisson point process. It is known that the passage time between 0 and $ne_1$ obeys a diffusive upper bound: $\mbox{Var}\, T(0
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4321fc0ea2d9d34ba3b5398d84985ea2
Autor:
Michael Damron, Pengfei Tang
Publikováno v:
Sojourns in Probability Theory and Statistical Physics-II ISBN: 9789811502972
First-passage percolation is the study of the metric space \((\mathbb {Z}^d,T)\), where T is a random metric defined as the weighted graph metric using random edge-weights \((t_e)_{e\in \mathcal {E}^d}\) assigned to the nearest-neighbor edges \(\math
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::59594ec02b4cded4e9142f93becf4220
https://doi.org/10.1007/978-981-15-0298-9_4
https://doi.org/10.1007/978-981-15-0298-9_4
Publikováno v:
Notices of the American Mathematical Society. 63:1004-1008