Zobrazeno 1 - 10
of 78
pro vyhledávání: '"Michael Cuntz"'
Publikováno v:
Forum of Mathematics, Sigma, Vol 8 (2020)
Frieze patterns, as introduced by Coxeter in the 1970s, are closely related to cluster algebras without coefficients. A suitable generalization of frieze patterns, linked to cluster algebras with coefficients, has only briefly appeared in an unpublis
Externí odkaz:
https://doaj.org/article/3f5404b7cd3148a19083cb215bc70446
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol DMTCS Proceedings vol. AT,..., Iss Proceedings (2014)
A Weyl arrangement is the arrangement defined by the root system of a finite Weyl group. When a set of positive roots is an ideal in the root poset, we call the corresponding arrangement an ideal subarrangement. Our main theorem asserts that any idea
Externí odkaz:
https://doaj.org/article/f0277c8030d84dfeb8609c049b18d8ee
Autor:
Michael Cuntz, Thorsten Holm
Publikováno v:
Algebraic Combinatorics. 4:741-755
Friezes with coefficients are maps assigning numbers to the edges and diagonals of a regular polygon such that all Ptolemy relations for crossing diagonals are satisfied. Among these, the classic Conway-Coxeter friezes are the ones where all values a
Autor:
Michael Cuntz
Michael Cuntz greift die Leibniz'sche Monadologie in systematischer Absicht auf. Zwar gehe es auch der Monadologie zunächst um die Organisation der Relationen zwischen Teilen und Ganzem. Allerdings trage Leibniz als "Denker des Fluiden" in diese Org
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7629ae03bf2c7d53fd9bf5568fe7eb7b
http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/68554
http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/68554
Autor:
Michael Cuntz
We investigate special points on the Grassmannian which correspond to friezes with coefficients in the case of rank two. Using representations of arithmetic matroids we obtain a theorem on subpolygons of specializations of the coordinate ring. As a s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d16a97bba0ca8be0e181e9ab94aeaed6
Publikováno v:
Communications in Algebra. 47:5261-5285
We translate the axioms of a Weyl groupoid with (not necessarily finite) root system in terms of arrangements. The result is a correspondence between Weyl groupoids permitting a root system and Tits arrangements satisfying an integrality condition wh
Autor:
Paul Mücksch, Michael Cuntz
Publikováno v:
Advances in Applied Mathematics. 107:32-73
Simplicial arrangements are classical objects in discrete geometry. Their classification remains an open problem but there is a list conjectured to be complete at least for rank three. A further important class in the theory of hyperplane arrangement
Publikováno v:
Annals of combinatorics : AC 26 (2022), Nr. 1
Annals of combinatorics : AC
Annals of combinatorics : AC
A catalogue of simplicial hyperplane arrangements was first given by Gr\"unbaum in 1971. These arrangements naturally generalize finite Coxeter arrangements and the weak order through the poset of regions. For simplicial arrangements, posets of regio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e5b533a45ebc07d344271fd320ee6af5
Autor:
Rembert Hüser, Christoph Asendorf, Michael Cuntz, Volker Wortmann, Thomas Meinecke, Alexander Streitberger, Susanne Holschbach, Dennis Göttel, Annemarie Matzke, Jan Künemund, Vera Klocke, Klemens Gruber, Hans Friedrich Bormann, Christa Blümlinger, Monika Meister, Jan Torge Claussen
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d7ea2a0a31c28f192e664c97a0a096cd
https://doi.org/10.30965/9783846765098
https://doi.org/10.30965/9783846765098
Autor:
Michael Cuntz
Publikováno v:
Die Attraktion des Apparativen ISBN: 9783846765098
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ded1b2d27924832a3d6a80993b504025
https://doi.org/10.30965/9783846765098_002
https://doi.org/10.30965/9783846765098_002