Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Michael Bersudsky"'
Autor:
Michael Bersudsky
It is known that the image in $\mathbb{R}^{2}/\mathbb{Z}^{2}$ of a circle of radius $\rho$ in the plane becomes equidistributed as $\rho\to\infty$. We consider the following sparse version of this phenomenon. Starting from a sequence of radii $\left\
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f6d68d9947f705aa20b0fb64d0ea0ac3
We find the Courant-sharp Neumann eigenvalues of the Laplacian on some 2-rep-tile domains. In $$\mathbb {R}^{2}$$ , the domains we consider are the isosceles right triangle and the rectangle with edge ratio $$\sqrt{2}$$ (also known as the A4 paper).
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8fd019f950a78dc0517ae5d286677a16