Zobrazeno 1 - 10
of 176
pro vyhledávání: '"Michael B. Giles"'
Autor:
Wei Fang, Michael B. Giles
Publikováno v:
SIAM/ASA Journal on Uncertainty Quantification. 9:1217-1241
This paper proposes a new pathwise sensitivity estimator for chaotic SDEs. By introducing a spring term between the original and perturbated SDEs, we derive a new estimator by importance sampling. The variance of the new estimator increases only line
Publikováno v:
Journal of Parallel and Distributed Computing. 128:99-114
In this paper we present research on improving the resilience of the execution of scientific software, an increasingly important concern in High Performance Computing (HPC). We build on an existing high-level abstraction framework, the Oxford Paralle
Publikováno v:
Giles, M, Debrabant, K & Rößler, A 2019, ' Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation ', Discrete and Continuous Dynamical Systems. Series B, vol. 24, no. 8, pp. 3881-3903 . https://doi.org/10.3934/dcdsb.2018335
The multilevel Monte Carlo path simulation method introduced by Giles ({\it Operations Research}, 56(3):607-617, 2008) exploits strong convergence properties to improve the computational complexity by combining simulations with different levels of re
Autor:
Zhenru Wang, Nicky J Welton, Howard Thom, Christopher Jackson, Christophe Andrieu, Wei Fang, Michael B. Giles
Publikováno v:
Fang, W, Wang, Z, Giles, M B, Jackson, C H, Welton, N J, Andrieu, C & Thom, H 2022, ' Multilevel and Quasi Monte Carlo Methods for the Calculation of the Expected Value of Partial Perfect Information ', Medical Decision Making, vol. 42, no. 2, pp. 168-181 . https://doi.org/10.1177/0272989X211026305
Medical Decision Making
Medical Decision Making
The expected value of partial perfect information (EVPPI) provides an upper bound on the value of collecting further evidence on a set of inputs to a cost-effectiveness decision model. Standard Monte Carlo (MC) estimation of EVPPI is computationally
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e6c8cee9a54e2aa937eb9d772b2c3842
https://doi.org/10.1101/2021.03.30.21254626
https://doi.org/10.1101/2021.03.30.21254626
Publikováno v:
Multivariate Algorithms and Information-Based Complexity ISBN: 9783110635461
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b05de10442a170f55ccf76a2e7366568
https://doi.org/10.1515/9783110635461-002
https://doi.org/10.1515/9783110635461-002
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9783030434649
This paper presents a simple idea for the use of quasi-Monte Carlo sampling with empirical datasets, such as those generated by MCMC methods. It also presents and analyses a related idea of taking advantage of the Hilbert space-filling curve. Theoret
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6bf03e78a80ca2400feffcf39a70ecf9
https://doi.org/10.1007/978-3-030-43465-6_26
https://doi.org/10.1007/978-3-030-43465-6_26
Publikováno v:
Foundations of Computational Mathematics. 19:205-238
We study the approximation of expectations $${\text {E}}(f(X))$$ for Gaussian random elements X with values in a separable Hilbert space H and Lipschitz continuous functionals $$f :H \rightarrow {{\mathbb {R}}}$$ . We consider restricted Monte Carlo
Autor:
Michael B. Giles, Francisco Bernal
Publikováno v:
e-Archivo: Repositorio Institucional de la Universidad Carlos III de Madrid
Universidad Carlos III de Madrid (UC3M)
e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid
instname
Universidad Carlos III de Madrid (UC3M)
e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid
instname
This paper proposes and analyses a new multilevel Monte Carlo method for the estimation of mean exit times for multi-dimensional Brownian diffusions, and associated functionals which correspond to solutions to high-dimensional parabolic PDEs through
Autor:
Michael B. Giles, Yuan Xia
Publikováno v:
Finance and Stochastics. 21:995-1026
We apply the multilevel Monte Carlo method for option pricing problems using exponential Levy models with a uniform timestep discretisation. For lookback and barrier options, we derive estimates of the convergence rate of the error introduced by the
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9783319914350
Building on previous research which generalized multilevel Monte Carlo methods using either sparse grids or Quasi-Monte Carlo methods, this paper considers the combination of all these ideas applied to elliptic PDEs with finite-dimensional uncertaint
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e0be6958713c92a78636a2461550806e
https://ora.ox.ac.uk/objects/uuid:9a30a9a7-9747-4616-aa78-134d9c8416b3
https://ora.ox.ac.uk/objects/uuid:9a30a9a7-9747-4616-aa78-134d9c8416b3