Zobrazeno 1 - 10
of 35
pro vyhledávání: '"Michał Ziembowski"'
Publikováno v:
International Journal of Algebra and Computation. 32:237-249
In this paper, we study the annihilating properties of ideals generated by coefficients of polynomials and power series which satisfy a structural equation. We first show that if [Formula: see text] for polynomials [Formula: see text] over any ring [
Publikováno v:
Communications in Contemporary Mathematics.
Let [Formula: see text] be a field, and let [Formula: see text] be a row-finite (directed) graph. We present a construction of a wealth of maximal commutative subalgebras of the Leavitt path algebra [Formula: see text], which is a far-reaching genera
Publikováno v:
Forum Mathematicum. 33:1573-1590
Considering prime Leavitt path algebras L K ( E ) {L_{K}(E)} , with E being an arbitrary graph with at least two vertices, and K being any field, we construct a class of maximal commutative subalgebras of L K ( E ) {L_{K}(E)} such that, for e
Publikováno v:
Volume: 50, Issue: 5 1280-1291
Hacettepe Journal of Mathematics and Statistics
Hacettepe Journal of Mathematics and Statistics
This article concerns commutative factor rings for ideals contained in the center. A ring $R$ is called CIFC if $R/I$ is commutative for some proper ideal $I$ of $R$ with $I\subseteq Z(R)$, where $Z(R)$ is the center of $R$. We prove that (i) for a C
Publikováno v:
Journal of Algebra. 573:492-508
For a field K containing 1 2 , we exhibit two matrices in the full n × n matrix algebra M n ( K ) which generate M n ( K ) as a Lie K-algebra with the commutator Lie product. We also study Lie centralizers of a not necessarily commutative unitary al
Autor:
Michał Ziembowski, Leon van Wyk
Publikováno v:
Journal of Algebra. 536:229-241
We solve the following open problem in the negative: does the power series ring R [ [ x ] ] of a ring R inherit from R the property of every faithful right ideal being cofaithful? In other words, we construct a ring R such that every faithful right i
Autor:
Michał Ziembowski, Grzegorz Bajor
Publikováno v:
Journal of Pure and Applied Algebra. 223:3869-3878
In this paper we construct a ring A which has annihilator condition (a.c.) and we show that neither A [ x ] nor A [ [ x ] ] has this property. This answers in negative a question asked by Hong, Kim, Lee and Nielsen. We also show that there is an alge
Autor:
Michał Ziembowski, Grzegorz Bajor
Publikováno v:
Publicationes Mathematicae Debrecen. 95:169-185
Publikováno v:
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Recercat. Dipósit de la Recerca de Catalunya
instname
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Publ. Mat. 63, no. 2 (2019), 423-444
Greenfeld, B, Smoktunowicz, A & Ziembowski, M 2019, ' Five solved problems on radicals of Ore extensions ', Publicacions Matemàtiques, vol. 63, no. 2, pp. 423-444 . https://doi.org/10.5565/PUBLMAT6321902
Publicacions Matemàtiques; Vol. 63, Núm. 2 (2019); p. 423-444
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Recercat. Dipósit de la Recerca de Catalunya
instname
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Publ. Mat. 63, no. 2 (2019), 423-444
Greenfeld, B, Smoktunowicz, A & Ziembowski, M 2019, ' Five solved problems on radicals of Ore extensions ', Publicacions Matemàtiques, vol. 63, no. 2, pp. 423-444 . https://doi.org/10.5565/PUBLMAT6321902
Publicacions Matemàtiques; Vol. 63, Núm. 2 (2019); p. 423-444
The first named author was partially supported by an ISF grant #1623/16. The second named author was supported by ERC Advanced grant Coimbra 320974. The third named author was supported by the Polish National Science Centre grant UMO2017/25/B/ST1/003
Publikováno v:
Transactions of the American Mathematical Society. 372:4553-4583
The first author was partially supported by the National Research, Development and Innovation Office of Hungary (NKFIH) K119934.