Zobrazeno 1 - 10
of 45
pro vyhledávání: '"Mi, Zeya"'
For $C^1$ diffeomorphisms with continuous invariant splitting without domination, we prove the existence of Pesin (un)stable manifold under the hyperbolicity of invariant measures.
Externí odkaz:
http://arxiv.org/abs/2402.11263
Autor:
Mi, Zeya, Cao, Yongluo
In this paper, we study physical measures for partially hyperbolic diffeomorphisms with multi one-dimensional centers under the condition that all Gibbs $u$-states are hyperbolic. We prove the finiteness of ergodic physical measures. Then by building
Externí odkaz:
http://arxiv.org/abs/2310.00674
Autor:
Mi, Zeya, Cao, Yongluo
We study the partially hyperbolic diffeomorphims whose center direction admits the u-definite property in the sense that all the central Lyapunov exponents of each ergodic Gibbs u-state are either all positive or all negative. We prove that for this
Externí odkaz:
http://arxiv.org/abs/2308.08139
Autor:
Cao, Yongluo, Mi, Zeya
Let $f$ be a $C^2$ diffeomorphism on compact Riemannian manifold $M$ with partially hyperbolic splitting $$ TM=E^u\oplus E_1^c\oplus\cdots\oplus E_k^c \oplus E^s, $$ where $E^u$ is uniformly expanding, $E^s$ is uniformly contracting, and ${\rm dim}E_
Externí odkaz:
http://arxiv.org/abs/2306.06575
Publikováno v:
In Journal of Differential Equations 15 August 2024 400:230-247
Autor:
Mi, Zeya
We prove the stochastic stability of an open class of partially hyperbolic diffeomorphisms, each of which admits two centers $E^c_1$ and $E^c_2$ such that any Gibbs $u$-state admits only positive (resp. negative) Lyapunov exponents along $E^c_1$ (res
Externí odkaz:
http://arxiv.org/abs/2007.06243
We prove that a partially hyperbolic attractor for a $C^1$ vector field with two dimensional center supports an SRB measure. In addition, we show that if the vector field is $C^2$, and the center bundle admits the sectional expanding condition w.r.t.
Externí odkaz:
http://arxiv.org/abs/2007.04559
Autor:
Mi, Zeya, Cao, Yongluo
For partially hyperbolic diffeomorphisms with mostly expanding and mostly contracting centers, we establish a topological structure, called skeleton{a set consisting of finitely many hyperbolic periodic points with maximal cardinality for which there
Externí odkaz:
http://arxiv.org/abs/2003.04512
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.