Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Mhamed Elmassoudi"'
Publikováno v:
Boundary Value Problems, Vol 2022, Iss 1, Pp 1-13 (2022)
Abstract This manuscript proves the existence of a nonnegative, nontrivial solution to a class of double-phase problems involving potential functions and logarithmic nonlinearity in the setting of Sobolev space on complete manifolds. Some application
Externí odkaz:
https://doaj.org/article/f777bdb06a7c471e844049d7884f3336
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 38, Iss 6 (2019)
This paper, is devoted to an existence result of entropy unilateral solutions for the nonlinear parabolic problems with obstacle in Musielak- Orlicz--spaces: $$ \partial_{t}u + A(u) + H(x,t,u,\nabla u) =f + div(\Phi(x,t,u))$$ and $$ u\geq \zeta \,\,\
Externí odkaz:
https://doaj.org/article/955188c90f674409a275a67dcea0b09e
Publikováno v:
Boletim da Sociedade Paranaense de Matemática. 40:1-22
This paper is devoted to the study of a class of parabolic equation of type$$ \frac{\partial u}{\partial t} -div(A(x,t,u,\nabla u) +B(x,t,u)) =f \quad\mbox{in}\quad Q_T, $$where $div(A(x,t,u,\nabla u)$ is a Leray-Lions type operator, $B(x,t,u)$ is a
Publikováno v:
Filomat. 36:5073-5092
In this paper, we will be concerned with the existence of renormalized solutions to the following parabolic-elliptic system {?u ?t + Au = ?(u)|??|2 in QT = ? ? (0, T), ?div(?(u)??) = divF(u) in QT, u = 0 on ?? ? (0, T), ? = 0 on ?? ? (0, T), u(?, 0)
Publikováno v:
Mathematical Modeling and Computing. 8:584-600
In this paper, a class of nonlinear evolution equations with damping arising in fluid dynamics and rheology is studied. The nonlinear term is monotone and possesses a convex potential but exhibits non-standard growth. The appropriate functional frame
Publikováno v:
Advances in Operator Theory. 7
Publikováno v:
Boletim da Sociedade Paranaense de Matemática. 38:203-238
This paper, is devoted to an existence result of entropy unilateral solutions for the nonlinear parabolic problems with obstacle in Musielak- Orlicz--spaces:$$ \partial_{t}u + A(u) + H(x,t,u,\nabla u) =f + div(\Phi(x,t,u))$$and $$ u\geq \zeta \,\,\mb
Publikováno v:
Monatshefte für Mathematik. 189:195-219
In this work, we shall be concerned with the existence and uniqueness result to the nonlinear parabolic equations whose prototype is $$\begin{aligned} \left\{ \begin{array}{lll} \displaystyle \frac{\partial b( u)}{\partial t} -\varDelta _{M}u - \text
Publikováno v:
Moroccan Journal of Pure and Applied Analysis. 4:189-206
We prove existence of entropy solutions to general class of unilateral nonlinear parabolic equation in inhomogeneous Musielak-Orlicz spaces avoiding ceorcivity restrictions on the second lower order term. Namely, we consider{u≥ψinQT,∂b(x,u)∂t-
Publikováno v:
Advances in Science, Technology and Engineering Systems, Vol 2, Iss 5, Pp 180-192 (2017)
In this paper, we discuss the solvability of the nonlinear parabolic systems associated to the nonlinear parabolic equation: \frac{\partial b_{i}(x,u_{i})}{\partial t} -div(a(x,t,u_{i},\nabla u_{i}))- \phi_{i}(x,t,u_{i})) +f_{i}(x,u_{1},u_{2})=0 ∂t