Zobrazeno 1 - 10
of 98
pro vyhledávání: '"Mezo, István"'
Motivated by the work of David Singmaster, we study the number of times an integer can appear among the Stirling numbers of both kinds. We provide an upper bound for the occurrences of all the positive integers, and present certain questions for furt
Externí odkaz:
http://arxiv.org/abs/2311.06080
Extensions of a set partition obtained by imposing bounds on the size of the parts and the coloring of some of the elements are examined. Combinatorial properties and the generating functions of some counting sequences associated with these partition
Externí odkaz:
http://arxiv.org/abs/2103.04151
Autor:
Mező, István
Publikováno v:
In Topology and its Applications 1 February 2024 342
Autor:
Mező, István
Based on a Problem and its solution published on the pages of SIAM Review, we give an interesting integral representation for the Lambert $W$ function in this short note. In particular, our result yields a new integral representation for the $\Omega=
Externí odkaz:
http://arxiv.org/abs/2012.02480
Autor:
Mező, István
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 November 2023 527(2)
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Bona, Miklos, Mezo, Istvan
We consider two varieties of labeled rooted trees, and the probability that a vertex chosen from all vertices of all trees of a given size uniformly at random has a given rank. We prove that this probability converges to a limit as the tree size goes
Externí odkaz:
http://arxiv.org/abs/1803.05033
The classical derangement numbers count fixed point-free permutations. In this paper we study the enumeration problem of generalized derangements, when some of the elements are restricted to be in distinct cycles in the cycle decomposition. We find e
Externí odkaz:
http://arxiv.org/abs/1803.04529
Autor:
Mező, István
In this paper we introduce the $p$-adic analogue of the Lambert $W$ function, and study its main properties.
Externí odkaz:
http://arxiv.org/abs/1801.00657
Autor:
Mező, István, Baricz, Árpád
Publikováno v:
Mathematical Inequalities and Applications 20(4) (2017) 991-1001
In this paper some new series and integral representations for the Tur\'anian of modified Bessel functions of the first kind are given, which give new asymptotic expansions and tight bounds for the Tur\'an determinant in the question. It is shown tha
Externí odkaz:
http://arxiv.org/abs/1611.00438