Zobrazeno 1 - 10
of 811
pro vyhledávání: '"Meyer, John P."'
This note establishes sharp time-asymptotic algebraic rate bounds for the classical evolution problem of Fujita, but with sublinear rather than superlinear exponent. A transitional stability exponent is identified, which has a simple reciprocity rela
Externí odkaz:
http://arxiv.org/abs/2411.07437
Publikováno v:
Journal of International Education in Business, 2024, Vol. 17, Issue 3, pp. 556-572.
Externí odkaz:
http://www.emeraldinsight.com/doi/10.1108/JIEB-02-2024-0022
We establish that the initial value problem for a generalised Burgers equation considered in part I of this paper, is well-posed. We also establish several qualitative properties of solutions to the initial value problem utilised in part I of the pap
Externí odkaz:
http://arxiv.org/abs/2209.04832
Autor:
Meyer, John, Inclezan, Daniela
Publikováno v:
EPTCS 345, 2021, pp. 84-98
This paper introduces the APIA architecture for policy-aware intentional agents. These agents, acting in changing environments, are driven by intentions and yet abide by domain-relevant policies. This work leverages the AIA architecture for intention
Externí odkaz:
http://arxiv.org/abs/2109.08287
Publikováno v:
In The International Journal of Management Education March 2024 22(1)
Self-organization is a process where a stable pattern is formed by the cooperative behavior between parts of an initially disordered system without external control or influence. It has been introduced to multi-agent systems as an internal control pr
Externí odkaz:
http://arxiv.org/abs/2105.07648
In this paper we develop and significantly extend the thermal phase change model, introduced in [12], describing the process of paraffinic wax layer formation on the interior wall of a circular pipe transporting heated oil, when subject to external c
Externí odkaz:
http://arxiv.org/abs/2104.14298
Autor:
Meyer, John P.
Publikováno v:
European Journal of Innovation Management, 2022, Vol. 26, Issue 5, pp. 1293-1311.
Externí odkaz:
http://www.emeraldinsight.com/doi/10.1108/EJIM-09-2021-0458
We present extensions of the comparison and maximum principles available for nonlinear non-local integro-differential operators $P:\mathcal{C}^{2,1}(\Omega \times (0,T])\times L^\infty (\Omega \times (0,T])\to\mathbb{R}$, of the form $P[u] = L[u] -f(
Externí odkaz:
http://arxiv.org/abs/2011.15058
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.