Zobrazeno 1 - 10
of 87
pro vyhledávání: '"Metzger, Jan"'
Autor:
Metzger, Jan, Diaz, Alejandro Peñuela
Inspired by the small sphere-limit for quasi-local energy we study local foliations of surfaces with prescribed mean curvature. Following the strategy used by Ye in 1991 to study local constant mean curvature foliations, we use a Lyapunov Schmidt red
Externí odkaz:
http://arxiv.org/abs/2207.14025
Let $(M,g)$ be a Riemannian $3$-manifold that is asymptotic to Schwarzschild. We study the existence of large area-constrained Willmore spheres $\Sigma \subset M$ with non-negative Hawking mass and inner radius $\rho$ dominated by the area radius $\l
Externí odkaz:
http://arxiv.org/abs/2204.04102
Autor:
Metzger, Jan
In this paper we consider surfaces which are critical points of the Willmore functional subject to constrained area. In the case of small area we calculate the corrections to the intrinsic geometry induced by the ambient curvature. These estimates to
Externí odkaz:
http://arxiv.org/abs/1908.11577
Autor:
Metzger, Jan, Peñuela Diaz, Alejandro
Publikováno v:
In Journal of Geometry and Physics June 2023 188
We show the existence of a local foliation of a three dimensional Riemannian manifold by critical points of the Willmore functional subject to a small area constraint around non-degenerate critical points of the scalar curvature. This adapts a method
Externí odkaz:
http://arxiv.org/abs/1806.00465
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Metzger, Jan.
Diss.--Universität St. Gallen, 1999.
Bibliogr. p. 443-473. Index.
Bibliogr. p. 443-473. Index.
Externí odkaz:
http://catalogue.bnf.fr/ark:/12148/cb38840922g
In this paper we study the local regularity of closed surfaces immersed in a Riemannian 3-manifold flowing by Willmore flow. We establish a pair of concentration-compactness alternatives for the flow, giving a lower bound on the maximal time of exist
Externí odkaz:
http://arxiv.org/abs/1308.6024