Zobrazeno 1 - 10
of 2 940
pro vyhledávání: '"Metric Dimension"'
Autor:
Peide Liu, Sikander Ali, Muhammad Azeem, Muhammad Kamran Jamil, Manzoor Ahmad Zahid, Waleed Ali, Bandar Almohsen
Publikováno v:
Scientific Reports, Vol 14, Iss 1, Pp 1-11 (2024)
Abstract The mixed metric dimension of a graph is an important parameter in characterizing its structural complexity, specifically in nanoscale networks where precision is paramount. In this article, we calculate the mixed metric dimension of hexagon
Externí odkaz:
https://doaj.org/article/582bc927432e40de9aab9b1fe7cc1e0a
Publikováno v:
Jurnal Matematika UNAND, Vol 13, Iss 4, Pp 349-357 (2024)
Consider a finite graph G that is simple, undirected, and connected. Let W be an ordered set of vertices with |W| = k. The representation of a vertex v is defined as an ordered k-tuple that consists of the distances from vertex v to each vertex in W.
Externí odkaz:
https://doaj.org/article/7c2ee61e19804619a8829556cb05fec8
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
AKCE International Journal of Graphs and Combinatorics, Vol 21, Iss 3, Pp 225-231 (2024)
Irregular convex triangular networks consist of the interior of a 6-sided convex polygon drawn on the infinite triangular network. Formal description of these applicable networks is provided. In the main result it is proved that the metric dimension
Externí odkaz:
https://doaj.org/article/f00596b152944e99abca782b4a6d449d
Publikováno v:
Journal of Mechanics of Continua and Mathematical Sciences, Vol 19, Iss 9, Pp 18-23 (2024)
A minimum resolving set is a resolving set with the lowest cardinality and its cardinality is a dimension of connected graph , represented by . A dominating set is a set of vertices such that each of is either in or has at least one neighbor in . The
Externí odkaz:
https://doaj.org/article/eb4b4b9fe0ea42788afa8d360855d245
Publikováno v:
AKCE International Journal of Graphs and Combinatorics, Vol 21, Iss 3, Pp 286-293 (2024)
A subset Δ of non-negative integers [Formula: see text] is called a numerical semigroup if it is a submonoid of [Formula: see text] and has a finite complement in [Formula: see text]. A graph [Formula: see text] is called a [Formula: see text]-graph
Externí odkaz:
https://doaj.org/article/03671f2af19c416989cccdc74440cfac