Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Meth, S. Z."'
In this paper, we study a new generalization of the Lorentz cone, called the Monotone Extended Second Order Cone (MESOC). We investigate basic properties of MESOC including computation of its Lyapunov rank and proving its reducibility. Moreover, we s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c2f2f70f02d73f2e1be36db7d71329c4
http://arxiv.org/abs/2103.04830
http://arxiv.org/abs/2103.04830
Autor:
N��meth, S. Z.
The Z-property of a linear map with respect to a cone is an extension of the notion of Z-matrices. In a recent paper of Orlitzky (see Corollary 6.2 in M. Orlitzky. Positive and $\mathbf{Z}$-operators on closed convex cones, Electron. J Linear Algebra
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3bae5db6cdcde89730be9ca1739e0e5b
http://arxiv.org/abs/1905.06885
http://arxiv.org/abs/1905.06885
In this paper the spherical quasi-convexity of quadratic functions on spherically convex sets is studied. Several conditions characterizing the spherical quasi-convexity of quadratic functions are presented. In particular, conditions implying spheric
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c840ad238e4613ad0e89bb8b96970b76
http://arxiv.org/abs/1804.02907
http://arxiv.org/abs/1804.02907
Autor:
N��meth, S. Z., Xiao, L.
In this paper, we study the linear complementarity problems on extended second order cones. We convert a linear complementarity problem on an extended second order cone into a mixed complementarity problem on the non-negative orthant. We state necess
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::93ea6d70c09e0fcb1f84a368c223e0a8
http://arxiv.org/abs/1707.04268
http://arxiv.org/abs/1707.04268
Autor:
Ferreira, O. P., N��meth, S. Z.
In this paper we study the spherical convexity of quadratic functions on spherically convex sets. In particular, conditions characterizing the spherical convexity of quadratic functions on spherical convex sets associated to the positive orthants and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7066688c1a93aaeebec552b03ab71a26
http://arxiv.org/abs/1704.07665
http://arxiv.org/abs/1704.07665
Autor:
Ferreira, O. P., N��meth, S. Z.
The extended second order cones were introduced by S. Z. N\'emeth and G. Zhang in [S. Z. N\'emeth and G. Zhang. Extended Lorentz cones and variational inequalities on cylinders. J. Optim. Theory Appl., 168(3):756-768, 2016] for solving mixed compleme
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cdd2a9fcd2576deb39788b65dd1727a2
http://arxiv.org/abs/1610.08887
http://arxiv.org/abs/1610.08887
Autor:
N��meth, A. B., N��meth, S. Z.
Proper cones with the property that the projection onto them is isotone with respect to the order they induce are called isotone projection cones. Isotone projection cones and their extensions have been used to solve complementarity problems and vari
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1403780d61d1bcd758093ceb4b573481
http://arxiv.org/abs/1608.06958
http://arxiv.org/abs/1608.06958
Autor:
N��meth, S. Z., Zhang, Guohan
Although the Karush-Kuhn-Tucker conditions suggest a connection between a conic optimization problem and a complementarity problem, it is difficult to find an accessible explicit form of this relationship in the literature. This note will present suc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9d5c611240b9e151decf6865f634819c
http://arxiv.org/abs/1607.05161
http://arxiv.org/abs/1607.05161
Autor:
N��meth, A. B., N��meth, S. Z.
The basic tool for solving problems in metric geometry and isotonic regression is the metric projection onto closed convex cones. Isotonicity of these projections with respect to a given order relation can facilitate finding the solutions of the abov
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f1fb8e023232ffd76ed51d344455d75d
http://arxiv.org/abs/1602.04743
http://arxiv.org/abs/1602.04743
In this paper a special piecewise linear system is studied. It is shown that, under a mild assumption, the semi-smooth Newton method applied to this system is well defined and the method generates a sequence that converges linearly to a solution. Bes
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5b9c4db658df11615806a0eeb903bd0f
http://arxiv.org/abs/1508.01582
http://arxiv.org/abs/1508.01582