Zobrazeno 1 - 10
of 203
pro vyhledávání: '"Metafune, Giorgio"'
Autor:
Metafune, Giorgio, Sobajima, Motohiro
We characterize the domain of the Schr\"odinger operators $S=-\Delta+c|x|^{-\alpha}$ in $L^p(\mathbb{R}^N)$, with $0<\alpha<2$ and $c\in\mathbb{R}$. When $\alpha p< N$, the domain characterization is essentially known and can be proved using differen
Externí odkaz:
http://arxiv.org/abs/2409.09917
We study elliptic and parabolic problems governed by the singular elliptic operators \begin{align*} \mathcal L=y^{\alpha_1}\mbox{Tr }\left(QD^2_xu\right)+2y^{\frac{\alpha_1+\alpha_2}{2}}q\cdot \nabla_xD_y+\gamma y^{\alpha_2} D_{yy}+Cy^{\alpha_2-1}D_y
Externí odkaz:
http://arxiv.org/abs/2309.14319
We study elliptic and parabolic problems governed by singular elliptic operators \begin{equation*} \mathcal L =\sum_{i,j=1}^{N+1}q_{ij}D_{ij}+\frac c y D_y \end{equation*} in the half-space $\mathbb{R}^{N+1}_+=\{(x,y): x \in \mathbb{R}^N, y>0\}$ unde
Externí odkaz:
http://arxiv.org/abs/2303.05467
We study elliptic and parabolic problems governed by the singular elliptic operators \begin{equation*} \mathcal L =y^{\alpha_1}\Delta_{x} +y^{\alpha_2}\left(D_{yy}+\frac{c}{y}D_y -\frac{b}{y^2}\right), \qquad\alpha_1, \alpha_2 \in\mathbb R \end{equat
Externí odkaz:
http://arxiv.org/abs/2201.05573
We study elliptic and parabolic problems governed by the singular elliptic operators $$ y^{\alpha}\left(D_{yy}+\frac{c}{y}D_y\right)-V(y),\qquad\alpha \in\mathbb R $$ in $\mathbb R_+$, where $V$ is a potential having non-negative real part.
Comm
Comm
Externí odkaz:
http://arxiv.org/abs/2201.04398
We study Sobolev spaces with weights in the half-space $\mathbb{R}^{N+1}_+=\{(x,y): x \in \mathbb{R}^N, y>0\}$, adapted to the singular elliptic operators \begin{equation*} \mathcal L =y^{\alpha_1}\Delta_{x} +y^{\alpha_2}\left(D_{yy}+\frac{c}{y}D_y -
Externí odkaz:
http://arxiv.org/abs/2112.01791
We study elliptic and parabolic problems governed by the singular elliptic operators Delta_x+c\yD_y-b\y^2 on the half-space R^{N+1}_+.
Externí odkaz:
http://arxiv.org/abs/2103.10314
Autor:
Choulli, Mourad, Metafune, Giorgio
We establish two-sided Gaussian bounds for fundamental solutions of general non-divergence form parabolic operators with H\"older continuous coefficients. The result we obtain is essentially based on parametrix method.
Externí odkaz:
http://arxiv.org/abs/1908.11054
Publikováno v:
Forum Mathematicum; Sep2024, Vol. 36 Issue 5, p1187-1200, 14p
Motivated by the recent results in arXiv:1601.05679 about the quark-antiquark potential in $\mathcal N=4$ SYM, we reconsider the problem of computing the asymptotic weak-coupling expansion of the ground state energy of a certain class of 1d Schr\"odi
Externí odkaz:
http://arxiv.org/abs/1603.03596