Zobrazeno 1 - 10
of 167
pro vyhledávání: '"Mesa, Lourdes"'
We consider the Laplacian with drift in $\mathbb R^n$ defined by $\Delta_\nu = \sum_{i=1}^n(\frac{\partial^2}{\partial x_i^2} + 2 \nu_i\frac{\partial }{\partial{x_i}})$ where $\nu=(\nu_1,\ldots,\nu_n)\in \mathbb R^n\setminus\{0\}$. The operator $\Del
Externí odkaz:
http://arxiv.org/abs/2403.15232
In this paper we study harmonic analysis operators in Dunkl settings associated with finite reflection groups on Euclidean spaces. We consider maximal operators, Littlewood-Paley functions, $\rho$-variation and oscillation operators involving time de
Externí odkaz:
http://arxiv.org/abs/2309.06147
Variation and oscillation operators on weighted Morrey-Campanato spaces in the Schr\'odinger setting
Let $\mathcal{L}$ be the Schr\"odinger operator with potential $V$, that is, $\mathcal L=-\Delta+V$, where it is assumed that $V$ satisfies a reverse H\"older inequality. We consider weighted Morrey-Campanato spaces $BMO_{\mathcal L,w}^\alpha (\mathb
Externí odkaz:
http://arxiv.org/abs/2211.04819
Autor:
Almeida, Víctor, Betancor, Jorge J., Fariña, Juan C., Quijano, Pablo, Rodríguez-Mesa, Lourdes
In this paper we establish $L^p(\mathbb{R}^d,\gamma_\infty)$-boundedness properties for square functions involving time and spatial derivatives of Ornstein-Uhlenbeck semigroups. Here $\gamma_\infty$ denotes the invariant measure. In order to prove th
Externí odkaz:
http://arxiv.org/abs/2202.06136
In this paper we establish $L^p$ boundedness properties for maximal operators, Littlewood-Paley functions and variation operators involving Poisson semigroups and resolvent operators associated with nonsymmetric Ornstein-Uhlenbeck operators. We consi
Externí odkaz:
http://arxiv.org/abs/2201.13076
In this paper we obtain quantitative weighted $L^p$-inequalities for some operators involving Bessel convolutions. We consider maximal operators, Littlewood-Paley functions and variational operators. We obtain $L^p(w)$-operator norms in terms of the
Externí odkaz:
http://arxiv.org/abs/2110.01917
By $\{T_t^a\}_{t>0}$ we denote the semigroup of operators generated by the Friedrichs extension of the Schr\"odinger operator with the inverse square potential $L_a=-\Delta+\frac{a}{|x|^2}$ defined in the space of smooth functions with compact suppor
Externí odkaz:
http://arxiv.org/abs/2105.03209
In this paper we study higher order Riesz transforms associated with the inverse Gaussian measure given by $\pi ^{n/2}e^{|x|^2}dx$ on $\mathbb{R}^n$. We establish $L^p(\mathbb{R}^n,e^{|x|^2}dx)$-boundedness properties and obtain representations as pr
Externí odkaz:
http://arxiv.org/abs/2011.11285
In this paper we prove $L^p$ estimates for Stein's square functions associated to Fourier-Bessel expansions. Furthermore we prove transference results for square functions from Fourier-Bessel series to Hankel transforms. Actually, these are transfere
Externí odkaz:
http://arxiv.org/abs/1912.08527
In this paper we study the behavior of some harmonic analysis operators associated with the discrete Laplacian $\Delta_d$ in discrete Hardy spaces $\mathcal H^p(\mathbb Z)$. We prove that the maximal operator and the Littlewood-Paley $g$ function def
Externí odkaz:
http://arxiv.org/abs/1810.10415