Zobrazeno 1 - 10
of 254
pro vyhledávání: '"Mercer inequality"'
Publikováno v:
Journal of Inequalities and Applications, Vol 2024, Iss 1, Pp 1-19 (2024)
Abstract Strongly convex functions as a subclass of convex functions, still equipped with stronger properties, are employed through several generalizations and improvements of the Jensen inequality and the Jensen–Mercer inequality. This paper addit
Externí odkaz:
https://doaj.org/article/2bd0e3b790804ec0bb0ca185b5723334
Publikováno v:
Mathematics, Vol 12, Iss 23, p 3711 (2024)
The goal of this study is to develop numerous Hermite–Hadamard–Mercer (H–H–M)-type inequalities involving various fractional integral operators, including classical, Riemann–Liouville (R.L), k-Riemann–Liouville (k-R.L), and their generali
Externí odkaz:
https://doaj.org/article/187e24efeed9444a9297e4ce3f80e4f0
Publikováno v:
AIMS Mathematics, Vol 9, Iss 5, Pp 10997-11006 (2024)
We extended the Mercer inequlaity, Fejér-Hermite-Hadamard, and Jensen inequalities for strongly convex functions. Moreover, we obtained several results in information theory and mathematical analysis using obtained inequalities.
Externí odkaz:
https://doaj.org/article/16431bf701b0452d95aeeceb9a44821d
Publikováno v:
Sahand Communications in Mathematical Analysis, Vol 21, Iss 1, Pp 307-325 (2024)
Motivated by the results of Niezgoda, corresponding to the generalization of Mercer's inequality for positive weights, in this paper, we consider real weights, for which we establish related results. To be more specific, Niezgoda's results are derive
Externí odkaz:
https://doaj.org/article/819dda314fbc4e44acaf132aff466b24
Publikováno v:
Fractal and Fractional, Vol 8, Iss 9, p 547 (2024)
This paper derives the sharp bounds for Hermite–Hadamard inequalities in the context of Riemann–Liouville fractional integrals. A generalization of Jensen’s inequality called the Jensen–Mercer inequality is used for general points to find the
Externí odkaz:
https://doaj.org/article/c3740942f58b4074b357e58424bab0ea
Publikováno v:
Axioms, Vol 13, Iss 8, p 553 (2024)
In this paper, we use the generalized version of convex functions, known as strongly convex functions, to derive improvements to the Jensen–Mercer inequality. We achieve these improvements through the newly discovered characterizations of strongly
Externí odkaz:
https://doaj.org/article/3ecf47609b0041d9a6b6c0d1a6033c2b
Publikováno v:
Fractal and Fractional, Vol 8, Iss 8, p 472 (2024)
In this research, we demonstrate novel Hermite–Hadamard–Mercer fractional integral inequalities using a wide class of fractional integral operators (the Raina fractional operator). Moreover, a new lemma of this type is proved, and new identities
Externí odkaz:
https://doaj.org/article/1ef7fb280c704e15a1f94fd68600925d
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of Inequalities and Applications, Vol 2023, Iss 1, Pp 1-29 (2023)
Abstract In this paper, we introduce notable Jensen–Mercer inequality for a general class of convex functions, namely uniformly convex functions. We explore some interesting properties of such a class of functions along with some examples. As a res
Externí odkaz:
https://doaj.org/article/6fafb5e09db147d7a2ea410794a684b7
Publikováno v:
Demonstratio Mathematica, Vol 56, Iss 1, Pp 1-12 (2023)
The Hermite-Hadamard inequality is regarded as one of the most favorable inequalities from the research point of view. Currently, mathematicians are working on extending, improving, and generalizing this inequality. This article presents conticrete i
Externí odkaz:
https://doaj.org/article/739999330ffd4fee952be0d4f00ce794