Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Mercedes Arguello Casteleiro"'
Autor:
Heather Davies, Goran Nenadic, Ghada Alfattni, Mercedes Arguello Casteleiro, Noura Al Moubayed, Sean Farrell, Alan D. Radford, P.-J. M. Noble
Publikováno v:
Frontiers in Veterinary Science, Vol 11 (2024)
In part two of this mini-series, we evaluate the range of machine-learning tools now available for application to veterinary clinical text-mining. These tools will be vital to automate extraction of information from large datasets of veterinary clini
Externí odkaz:
https://doaj.org/article/9cc7f140cf32400ea3ae65442e3e74eb
Autor:
Heather Davies, Goran Nenadic, Ghada Alfattni, Mercedes Arguello Casteleiro, Noura Al Moubayed, Sean O. Farrell, Alan D. Radford, Peter-John M. Noble
Publikováno v:
Frontiers in Veterinary Science, Vol 11 (2024)
The development of natural language processing techniques for deriving useful information from unstructured clinical narratives is a fast-paced and rapidly evolving area of machine learning research. Large volumes of veterinary clinical narratives no
Externí odkaz:
https://doaj.org/article/05432f29bbe344fa9632b56301a4b649
Autor:
Mercedes Arguello Casteleiro, George Demetriou, Warren Read, Maria Jesus Fernandez Prieto, Nava Maroto, Diego Maseda Fernandez, Goran Nenadic, Julie Klein, John Keane, Robert Stevens
Publikováno v:
Journal of Biomedical Semantics, Vol 9, Iss 1, Pp 1-24 (2018)
Abstract Background Automatic identification of term variants or acceptable alternative free-text terms for gene and protein names from the millions of biomedical publications is a challenging task. Ontologies, such as the Cardiovascular Disease Onto
Externí odkaz:
https://doaj.org/article/58c2e38662004bfd85f0b2e5004baecc
Autor:
Nava Maroto, Maria Jesus Fernandez Prieto, Julio Des Diz, Mercedes Arguello Casteleiro, Simon Peters, Chris Wroe, Robert Stevens, Diego Maseda Fernandez, Carlos Sevillano Torrado
Publikováno v:
JMIR Medical Informatics, Vol 8, Iss 8, p e16948 (2020)
Arguello Casteleiro, M, Des-Diz, J, Maroto, N, Fernandez-Prieto, M J, Peters, S, Wroe, C, Torrado, C S, Fernandez, D M & Stevens, R 2020, ' Semantic Deep Learning: prior knowledge and a type of four-term embedding analogies to acquire treatments for wellknown diseases ', JMIR medical informatics, vol. 8, no. 8 . https://doi.org/10.2196/16948
JMIR Medical Informatics
Arguello Casteleiro, M, Des-Diz, J, Maroto, N, Fernandez-Prieto, M J, Peters, S, Wroe, C, Torrado, C S, Fernandez, D M & Stevens, R 2020, ' Semantic Deep Learning: prior knowledge and a type of four-term embedding analogies to acquire treatments for wellknown diseases ', JMIR medical informatics, vol. 8, no. 8 . https://doi.org/10.2196/16948
JMIR Medical Informatics
Background How to treat a disease remains to be the most common type of clinical question. Obtaining evidence-based answers from biomedical literature is difficult. Analogical reasoning with embeddings from deep learning (embedding analogies) may ext
Autor:
Mercedes Arguello Casteleiro, Julio Des Diz, Nava Maroto, Maria Jesus Fernandez Prieto, Simon Peters, Chris Wroe, Carlos Sevillano Torrado, Diego Maseda Fernandez, Robert Stevens
BACKGROUND How to treat a disease remains to be the most common type of clinical question. Obtaining evidence-based answers from biomedical literature is difficult. Analogical reasoning with embeddings from deep learning (embedding analogies) may ext
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3d82ae88d278b5f7f931362dfea23a1c
https://doi.org/10.2196/preprints.16948
https://doi.org/10.2196/preprints.16948
Autor:
George Demetriou, Mercedes Arguello-Casteleiro, Phil H. Jones, Chris Wroe, John A. Keane, M.J. Fernandez-Prieto, Julio Des-Diz, Peter-John M. Noble, Simon Peters, Nava Maroto, Goran Nenadic, Jo Dukes-McEwan, Alan D Radford, Diego Maseda-Fernandez, Robert Stevens
Publikováno v:
Journal of Biomedical Semantics
Arguello Casteleiro, M, Stevens, R, Des-Diz, J, Wroe, C, Fernandez-Prieto, M J, Maroto, N, Maseda Fernandez, D, Demetriou, G, Peters, S, Noble, P-J M, Jones, P H, Dukes-McEwan, J, Radford, A D, Keane, J & Nenadic, G 2019, ' Exploring semantic deep learning for building reliable and reusable one health knowledge from PubMed systematic reviews and veterinary clinical notes ', Journal of Biomedical Semantics, vol. 10, no. 22 . https://doi.org/10.1186/s13326-019-0212-6
Journal of Biomedical Semantics, Vol 10, Iss S1, Pp 1-28 (2019)
Arguello Casteleiro, M, Stevens, R, Des-Diz, J, Wroe, C, Fernandez-Prieto, M J, Maroto, N, Maseda Fernandez, D, Demetriou, G, Peters, S, Noble, P-J M, Jones, P H, Dukes-McEwan, J, Radford, A D, Keane, J & Nenadic, G 2019, ' Exploring semantic deep learning for building reliable and reusable one health knowledge from PubMed systematic reviews and veterinary clinical notes ', Journal of Biomedical Semantics, vol. 10, no. 22 . https://doi.org/10.1186/s13326-019-0212-6
Journal of Biomedical Semantics, Vol 10, Iss S1, Pp 1-28 (2019)
Background Deep Learning opens up opportunities for routinely scanning large bodies of biomedical literature and clinical narratives to represent the meaning of biomedical and clinical terms. However, the validation and integration of this knowledge
Autor:
Maria Jesus Fernandez Prieto, George Demetriou, Nava Maroto, Robert Stevens, Diego Maseda Fernandez, Warren J. Read, Goran Nenadic, Julie Klein, John A. Keane, Mercedes Arguello Casteleiro
Publikováno v:
Arguello Casteleiro, M, Demetriou, G, Read, W, Fernandez Prieto, M J, Maroto, N, Maseda Fernandez, D, Nenadic, G, Klein, J, Keane, J & Stevens, R 2018, ' Deep learning meets ontologies: experiments to anchor the cardiovascular disease ontology in the biomedical literature ', Journal of Biomedical Semantics, vol. 9, no. 13 . https://doi.org/10.1186/s13326-018-0181-1
Journal of Biomedical Semantics
Journal of Biomedical Semantics, Vol 9, Iss 1, Pp 1-24 (2018)
Journal of Biomedical Semantics
Journal of Biomedical Semantics, Vol 9, Iss 1, Pp 1-24 (2018)
Background\ud Automatic identification of term variants or acceptable alternative free-text terms for gene and protein names from the millions of biomedical publications is a challenging task. Ontologies, such as the Cardiovascular Disease Ontology (
Autor:
Mercedes, Arguello Casteleiro, Diego, Maseda Fernandez, George, Demetriou, Warren, Read, Maria Jesus, Fernandez Prieto, Julio, Des Diz, Goran, Nenadic, John, Keane, Robert, Stevens
Publikováno v:
Studies in health technology and informatics. 235
We investigate the application of distributional semantics models for facilitating unsupervised extraction of biomedical terms from unannotated corpora. Term extraction is used as the first step of an ontology learning process that aims to (semi-)aut
Publikováno v:
Methods in molecular biology (Clifton, N.J.). 1574
Clinical proteomics has led to the identification of a substantial number of disease-associated peptides and protein fragments in several conditions such as cancer, kidney, or cardiovascular diseases. In silico prediction tools that can facilitate li
Publikováno v:
Artificial Intelligence XXXIV ISBN: 9783319710778
SGAI Conf.
SGAI Conf.
SNOMED International is working on a query language specification for SNOMED CT, which we call here SCTQL. SNOMED CT is the leading terminology for use in Electronic Health Records (EHRs). SCTQL can contribute to effective retrieval and reuse of clin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2d810a7673aa60d7c7b74f3cecbb6b5d
https://doi.org/10.1007/978-3-319-71078-5_20
https://doi.org/10.1007/978-3-319-71078-5_20