Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Menno Genseberger"'
Autor:
Menno Genseberger, Asako Fujisaki, Christophe Thiange, Carlijn Eijsberg - Bak, Arnout Bijlsma, Pascal Boderie
Publikováno v:
Domain Decomposition Methods in Science and Engineering XXVI ISBN: 9783030950248
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e08b5ad5758f2acbc8a7f5e64d064787
https://doi.org/10.1007/978-3-030-95025-5_29
https://doi.org/10.1007/978-3-030-95025-5_29
Autor:
John Donners, Menno Genseberger
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783030504199
ICCS (3)
ICCS (3)
In the Netherlands, for coastal and inland water applications, wave modelling with SWAN on structured computational grids has become a main ingredient. However, computational times are relatively high. Benchmarks showed that the MPI version of SWAN i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::507b67f4777697fe10d343374f83b0a2
https://doi.org/10.1007/978-3-030-50420-5_7
https://doi.org/10.1007/978-3-030-50420-5_7
Practical measures for improving the ecological state of Lake Marken using in‐depth system knowledge
Publikováno v:
Lakes & Reservoirs: Science, Policy and Management for Sustainable Use. 21:56-64
For Lake Marken in the Netherlands, high suspended sediment concentrations result in reduced ecological values and prevent goals and standards from being met (Water Framework Directive, Natura 2000). A practical measure to improve the ecology that is
Autor:
Menno Genseberger
Publikováno v:
Applied Numerical Mathematics. 60:1083-1099
Most computational work in Jacobi-Davidson [G.L.G. Sleijpen, H.A. van der Vorst, A Jacobi-Davidson iteration method for linear eigenvalue problems, SIAM J. Matrix Anal. Appl. 17 (1996) 401-425], an iterative method for large scale eigenvalue problems
Publikováno v:
Lecture Notes in Computational Science and Engineering ISBN: 9783319057880
We describe the extension of the parallel implementation of the ADI-type shallow-water solver SIMONA using a Schwarz method with a large overlap and Dirichlet–Dirichlet coupling, to a Schwarz method without overlap and an optimized coupling. The ex
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d69acdf32be6d00985cae1a7ba0adb98
https://doi.org/10.1007/978-3-319-05789-7_53
https://doi.org/10.1007/978-3-319-05789-7_53
Autor:
Menno Genseberger
Publikováno v:
Lecture Notes in Computational Science and Engineering ISBN: 9783319057880
Most computational work in Jacobi-Davidson, an iterative method for large scale eigenvalue problems, is due to a so-called correction equation. For this, to reduce wall clock time and local memory requirements, in earlier work a domain decomposition
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ef7c6df2f94603bc1f94e22e9ab0bb3e
https://doi.org/10.1007/978-3-319-05789-7_81
https://doi.org/10.1007/978-3-319-05789-7_81
Publikováno v:
Numerical Linear Algebra with Applications. 6:235-253
The correction equation in the Jacobi-Davidson method is effective in a subspace orthogonal to the current eigenvector approximation, whereas for the continuation of the process only vectors orthogonal to the search subspace are of importance. Such a
Autor:
John Donners, Menno Genseberger
Publikováno v:
ICCS
In the Netherlands, for coastal and inland water applications, wave modelling with SWAN has become a main ingredient. However, computational times are relatively high. Therefore we investigated the parallel efficiency of the current MPI and OpenMP ve