Zobrazeno 1 - 10
of 51
pro vyhledávání: '"Menglong Su"'
Autor:
Menglong Su
Publikováno v:
Boundary Value Problems, Vol 2021, Iss 1, Pp 1-21 (2021)
Abstract In this paper, by using the energy estimates, the structure of the equations, and the properties of one dimension, we establish the global existence and uniqueness of strong and classical solutions to the initial boundary value problem of co
Externí odkaz:
https://doaj.org/article/86b4053775a64f3e9f852018bcee2218
Autor:
Menglong Su
Publikováno v:
Journal of Inequalities and Applications, Vol 2021, Iss 1, Pp 1-29 (2021)
Abstract In this paper, we investigate an initial boundary value problem for two-dimensional inhomogeneous incompressible MHD system with density-dependent viscosity. First, we establish a blow-up criterion for strong solutions with vacuum. Precisely
Externí odkaz:
https://doaj.org/article/e45572e4cd98428cb9bab3866c40ce83
Autor:
Menglong Su1 mlsulynu@163.com
Publikováno v:
Advances in Differential Equations & Control Processes. May2020, Vol. 22 Issue 2, p97-108. 12p.
Autor:
Menglong Su, Mingji Liu
Publikováno v:
Journal of Inequalities and Applications, Vol 2019, Iss 1, Pp 1-8 (2019)
Abstract As is well known, fixed point theorems and problems play important roles in differential equations, mathematical programming, control, and so on. In this paper, by providing some unboundedness conditions and by using some inequality techniqu
Externí odkaz:
https://doaj.org/article/83563d32e2bd4029a028c37b0230e0e6
Autor:
Menglong Su1 mlsulynu@163.com
Publikováno v:
Advances in Differential Equations & Control Processes. Nov2019, Vol. 21 Issue 2, p201-212. 12p.
Autor:
Menglong Su1 mlsulynu@163.com
Publikováno v:
Advances in Differential Equations & Control Processes. May2015, Vol. 15 Issue 2, p83-92. 10p.
Autor:
Menglong Su1 mlsulynu@163.com, Shuyuan Nie1
Publikováno v:
Advances in Differential Equations & Control Processes. Feb2015, Vol. 15 Issue 1, p45-51. 7p.
Autor:
Menglong Su
Publikováno v:
International Journal of Numerical Methods and Applications. 19:159-166
Publikováno v:
Journal of Mathematical Analysis and Applications. 469:16-43
We study the following time fractional complex nonlinear Ginzburg–Landau equation: { e − i ω 0 C D t α u − △ u = e i γ | u | p − 1 u , x ∈ R N , t > 0 , u ( 0 , x ) = u 0 ( x ) , x ∈ R N , where 0 α 1 , γ ∈ R , − π + π α 2
Publikováno v:
Neurocomputing. 313:220-228
Global exponential stability problem of impulsive inertial neural networks with time-varying discrete-delay and distributed-delay is considered in the present paper. Lyapunov–Krasovskii functional and differential inequality for delay differential