Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Menchavez, Sheila"'
In this paper, we provide proofs for the analytic characterization theorems of the operator symbols utilizing the characterization theorem for the Mittag-Leffler distribution space.We work out examples which can be interpreted as integral kernel oper
Externí odkaz:
http://arxiv.org/abs/2409.06143
In this paper we use a biorthogonal approach to the analysis of the infinite dimensional fractional Poisson measure $\pi_{\sigma}^{\beta}$, $0<\beta\leq1$, on the dual of Schwartz test function space $\mathcal{D}'$. The Hilbert space $L^{2}(\pi_{\sig
Externí odkaz:
http://arxiv.org/abs/2205.03397
In this paper, we use a biorthogonal approach (Appell system) to construct and characterize the spaces of test and generalized functions associated to the fractional Poisson measure $\pi_{\lambda,\beta}$, that is, a probability measure in the set of
Externí odkaz:
http://arxiv.org/abs/2205.00059
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In this paper we use a biorthogonal approach to the analysis of the infinite dimensional fractional Poisson measure $\pi_{\sigma}^{\beta}$, $0
Comment: 41 pages, 1 figure
Comment: 41 pages, 1 figure
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::23b08cb0158d5525d75bfd8ae5c85a97
Autor:
Canoy, Sergio R.1,2 sergio.canoy@g.msuiit.edu.ph, Jamil, Ferdinand P.1,2 ferdinand.jamil@g.msuiit.edu.ph, Menchavez, Sheila M.1,2 sheila.menchavez@g.msuiit.edu.ph
Publikováno v:
European Journal of Pure & Applied Mathematics. Oct2023, Vol. 16 Issue 4, p2431-2449. 19p.
In this paper we show that Sheffer operators, mapping monomials to certain Sheffer polynomial sequences, such as falling and rising factorials, Charlier, and Hermite polynomials extend to continuous automorphisms on the space of entire functions of f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2294::fa1c50f7d5d42e82faea8cb4fdff0b16
https://pub.uni-bielefeld.de/record/2933322
https://pub.uni-bielefeld.de/record/2933322