Zobrazeno 1 - 10
of 249
pro vyhledávání: '"Melliani, Said"'
Autor:
Benmerrous Abdelmjid, Chadli Lalla saadia, Moujahid Abdelaziz, Elomari M’hamed, Melliani Said
Publikováno v:
Nonautonomous Dynamical Systems, Vol 11, Iss 1, Pp 115086-639 (2024)
This article is dedicated to establishing the existence and uniqueness of solutions for the following problem: Dαx(t)=F(t,x(t))x(0)=x0,\left\{\begin{array}{l}{D}^{\alpha }x\left(t)=F\left(t,x\left(t))\hspace{1.0em}\\ x\left(0)={x}_{0},\hspace{1.0em}
Externí odkaz:
https://doaj.org/article/b2c29c54a408463f8eddbcd0e4084950
In this paper, we investigate the existence of a "weak solutions" for a Neumann problems of $p(x)$-Laplacian-like operators, originated from a capillary phenomena, of the following form \begin{equation*} \displaystyle\left\{\begin{array}{ll} \display
Externí odkaz:
http://arxiv.org/abs/2112.06262
Publikováno v:
Acta Universitatis Sapientiae: Mathematica, Vol 15, Iss 1, Pp 91-108 (2023)
In this paper we study a Neumann boundary value problem of a new p(x)-Kirchhoff type problems driven by p(x)-Laplacian-like operators. Using the theory of variable exponent Sobolev spaces and the method of the topological degree for a class of demico
Externí odkaz:
https://doaj.org/article/a17eb06ac76a4aa0a92dae8ea2e4f547
Publikováno v:
Nonautonomous Dynamical Systems, Vol 9, Iss 1, Pp 272-289 (2022)
The main crux of this manuscript is to establish the existence and uniqueness of solutions for nonlocal fractional evolution equations involving ψ−Caputo fractional derivatives of an arbitrary order α ∈ (0, 1) with nondense domain. The mild sol
Externí odkaz:
https://doaj.org/article/868d0456d6714ff192574130fcccbe85
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
International Journal of Nonlinear Analysis & Applications; Nov2024, Vol. 15 Issue 11, p393-402, 10p
Publikováno v:
Soft Computing - A Fusion of Foundations, Methodologies & Applications; Sep2024, Vol. 28 Issue 17/18, p9307-9315, 9p