Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Melkana A. Brakalova"'
Publikováno v:
Ark. Mat. 54, no. 2 (2016), 371-401
The paper presents a study of Fuglede’s \(p\)-module of systems of measures in condensers in polarizable Carnot groups. In particular, we calculate the \(p\)-module of measures in spherical ring domains, find the extremal measures, and finally, ext
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8a5f6e09e1e86116138c38e0714d8bde
http://projecteuclid.org/euclid.afm/1485802758
http://projecteuclid.org/euclid.afm/1485802758
Autor:
Melkana A. Brakalova
Publikováno v:
Annales Academiae Scientiarum Fennicae Mathematica. 35:235-254
This paper is dedicated in loving memory to V.V. Alexandrov and A.A. Gol'dberg. Abstract. This is the second of two papers devoted to the topic of conformality at a point and related notions in the plane. We derive representation formulas and estimat
Autor:
Melkana A. Brakalova
Publikováno v:
Complex Variables and Elliptic Equations. 55:137-155
We study the local behaviour of ACL-homeomorphisms in the plane, defined in a neighbourhood of a point and satisfying the Beltrami equation with coefficient We use extremal length techniques, modules of ring domains, of quadrilaterals and of families
Autor:
James A. Jenkins, Melkana A. Brakalova
Publikováno v:
Journal of Mathematical Sciences. 95:2178-2184
In the previous paper by the authors, it is shown that a sense-preserving homeomorphism, absolutely continuous on lines (ACL), under certain integral conditions on the complex dilation is conformal at a point. This result includes the Teichmuller-Wit
Autor:
James A. Jenkins, Melkana A. Brakalova
Publikováno v:
Journal d'Analyse Mathématique. 76:67-92
In this paper we study the existence and uniqueness of solutions of the Beltrami equationf -z (z) =Μ(z)f z (z), whereΜ(z) is a measurable function defined almost everywhere in a plane domain ‡ with ‖ΜΜ∞ = 1-Here the partialsf z andf z of a
We study Fuglede's $p$-module of systems of measures in condensers in Euclidean spaces and on polarizable Carnot groups. We apply and generalize a result by Rodin, which provides an explicit method for finding the extremal function and the 2-module o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::667c91ea489209c3f8ccbc757b2e5380