Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Melanie F Pradier"'
Publikováno v:
PLoS ONE, Vol 13, Iss 8, p e0200822 (2018)
Economic complexity reflects the amount of knowledge that is embedded in the productive structure of an economy. It resides on the premise of hidden capabilities-fundamental endowments underlying the productive structure. In general, measuring the ca
Externí odkaz:
https://doaj.org/article/a51b9188ce9644409249aa00e8fc809b
Publikováno v:
PLoS ONE, Vol 11, Iss 1, p e0147402 (2016)
This paper presents a novel application of Bayesian nonparametrics (BNP) for marathon data modeling. We make use of two well-known BNP priors, the single-p dependent Dirichlet process and the hierarchical Dirichlet process, in order to address two di
Externí odkaz:
https://doaj.org/article/db2daf090a874737a46a4ad1d1e01d28
Autor:
Maia Jacobs, Melanie F. Pradier, Thomas H. McCoy, Roy H. Perlis, Finale Doshi-Velez, Krzysztof Z. Gajos
Publikováno v:
Translational Psychiatry, Vol 11, Iss 1, Pp 1-9 (2021)
Abstract Decision support systems embodying machine learning models offer the promise of an improved standard of care for major depressive disorder, but little is known about how clinicians’ treatment decisions will be influenced by machine learnin
Externí odkaz:
https://doaj.org/article/9aeca3ddaa45437cb954258381e69b7f
Publikováno v:
Journal of Affective Disorders. 311:110-114
While clinicians commonly learn heuristics to guide antidepressant treatment selection, surveys suggest real-world prescribing practices vary widely. We aimed to determine the extent to which antidepressant prescriptions were consistent with commonly
Autor:
Melanie F. Pradier, Roy H. Perlis, Finale Doshi-Velez, Krzysztof Z. Gajos, Thomas H. McCoy, Maia Jacobs
Publikováno v:
Translational Psychiatry, Vol 11, Iss 1, Pp 1-9 (2021)
Translational Psychiatry
Translational Psychiatry
Decision support systems embodying machine learning models offer the promise of an improved standard of care for major depressive disorder, but little is known about how clinicians’ treatment decisions will be influenced by machine learning recomme
Autor:
Maia Jacobs, Krzysztof Z. Gajos, Thomas H. McCoy, Melanie F. Pradier, Andrew C. Ahn, Finale Doshi-Velez, Barbara Lam, Roy H. Perlis, Jeffrey He
Publikováno v:
CHI
Major depressive disorder is a debilitating disease affecting 264 million people worldwide. While many antidepressant medications are available, few clinical guidelines support choosing among them. Decision support tools (DSTs) embodying machine lear
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d4eb3b6f311c3b9a55cebf44a0eb81ba
http://arxiv.org/abs/2102.00593
http://arxiv.org/abs/2102.00593
Autor:
Thomas H. McCoy, Michael C. Hughes, Roy H. Perlis, Andrew S. Ross, Finale Doshi-Velez, Melanie F. Pradier
ImportanceIn the absence of readily-assessed and clinically-validated predictors of treatment response, pharmacologic management of major depressive disorder (MDD) often relies on trial and error.ObjectiveTo utilize electronic health records to ident
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::83e5915c0fb20860bd4f7db3467db06e
https://doi.org/10.1101/2020.03.18.20038232
https://doi.org/10.1101/2020.03.18.20038232
Autor:
Finale Doshi-Velez, Michael C. Hughes, Sergio Barroilhet, Melanie F. Pradier, Thomas H. McCoy, Roy H. Perlis
Publikováno v:
Neuropsychopharmacology
We aimed to develop and validate classification models able to identify individuals at high risk for transition from a diagnosis of depressive disorder to one of bipolar disorder. This retrospective health records cohort study applied outpatient clin
Publikováno v:
Translational Psychiatry, Vol 10, Iss 1, Pp 1-8 (2020)
Translational Psychiatry
Translational Psychiatry
Antidepressants exhibit similar efficacy, but varying tolerability, in randomized controlled trials. Predicting tolerability in real-world clinical populations may facilitate personalization of treatment and maximize adherence. This retrospective lon
Autor:
Gunnar Rätsch, Stephanie L. Hyland, Melanie F. Pradier, Kjong-Van Lehmann, Julia E. Vogt, Fernando Perez-Cruz, Stefan G. Stark
MotivationPersonalized medicine aims at combining genetic, clinical, and environmental data to improve medical diagnosis and disease treatment, tailored to each patient. This paper presents a Bayesian nonparametric (BNP) approach to identify genetic
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::184e63a77bfe256bc52ffeb5bdc52b0a