Zobrazeno 1 - 10
of 1 889
pro vyhledávání: '"Meijering, A."'
Deep learning has shown great potential for automated medical image segmentation to improve the precision and speed of disease diagnostics. However, the task presents significant difficulties due to variations in the scale, shape, texture, and contra
Externí odkaz:
http://arxiv.org/abs/2409.03367
Reliable analysis of intracellular dynamic processes in time-lapse fluorescence microscopy images requires complete and accurate tracking of all small particles in all time frames of the image sequences. A fundamental first step towards this goal is
Externí odkaz:
http://arxiv.org/abs/2408.07903
Autor:
Tchetchenian, Ari, Zekelman, Leo, Chen, Yuqian, Rushmore, Jarrett, Zhang, Fan, Yeterian, Edward H., Makris, Nikos, Rathi, Yogesh, Meijering, Erik, Song, Yang, O'Donnell, Lauren J.
Parcellation of human cerebellar pathways is essential for advancing our understanding of the human brain. Existing diffusion MRI tractography parcellation methods have been successful in defining major cerebellar fibre tracts, while relying solely o
Externí odkaz:
http://arxiv.org/abs/2407.15132
Retinal diseases can cause irreversible vision loss in both eyes if not diagnosed and treated early. Since retinal diseases are so complicated, retinal imaging is likely to show two or more abnormalities. Current deep learning techniques for segmenti
Externí odkaz:
http://arxiv.org/abs/2407.02871
Autor:
Sandarenu, Piumi, Chen, Julia, Slapetova, Iveta, Browne, Lois, Graham, Peter H., Swarbrick, Alexander, Millar, Ewan K. A., Song, Yang, Meijering, Erik
Advancements in digital imaging technologies have sparked increased interest in using multiplexed immunofluorescence (mIF) images to visualise and identify the interactions between specific immunophenotypes with the tumour microenvironment at the cel
Externí odkaz:
http://arxiv.org/abs/2406.15727
Survival risk stratification is an important step in clinical decision making for breast cancer management. We propose a novel deep learning approach for this purpose by integrating histopathological imaging, genetic and clinical data. It employs vis
Externí odkaz:
http://arxiv.org/abs/2402.11788
Publikováno v:
JBHI, 24 June 2024
Breast cancer is a significant health concern affecting millions of women worldwide. Accurate survival risk stratification plays a crucial role in guiding personalised treatment decisions and improving patient outcomes. Here we present BioFusionNet,
Externí odkaz:
http://arxiv.org/abs/2402.10717
Segmentation is an important task in a wide range of computer vision applications, including medical image analysis. Recent years have seen an increase in the complexity of medical image segmentation approaches based on sophisticated convolutional ne
Externí odkaz:
http://arxiv.org/abs/2312.10585
Diseases such as diabetic retinopathy and age-related macular degeneration pose a significant risk to vision, highlighting the importance of precise segmentation of retinal vessels for the tracking and diagnosis of progression. However, existing vess
Externí odkaz:
http://arxiv.org/abs/2309.03535
Autor:
Lekadir, Karim, Feragen, Aasa, Fofanah, Abdul Joseph, Frangi, Alejandro F, Buyx, Alena, Emelie, Anais, Lara, Andrea, Porras, Antonio R, Chan, An-Wen, Navarro, Arcadi, Glocker, Ben, Botwe, Benard O, Khanal, Bishesh, Beger, Brigit, Wu, Carol C, Cintas, Celia, Langlotz, Curtis P, Rueckert, Daniel, Mzurikwao, Deogratias, Fotiadis, Dimitrios I, Zhussupov, Doszhan, Ferrante, Enzo, Meijering, Erik, Weicken, Eva, González, Fabio A, Asselbergs, Folkert W, Prior, Fred, Krestin, Gabriel P, Collins, Gary, Tegenaw, Geletaw S, Kaissis, Georgios, Misuraca, Gianluca, Tsakou, Gianna, Dwivedi, Girish, Kondylakis, Haridimos, Jayakody, Harsha, Woodruf, Henry C, Mayer, Horst Joachim, Aerts, Hugo JWL, Walsh, Ian, Chouvarda, Ioanna, Buvat, Irène, Tributsch, Isabell, Rekik, Islem, Duncan, James, Kalpathy-Cramer, Jayashree, Zahir, Jihad, Park, Jinah, Mongan, John, Gichoya, Judy W, Schnabel, Julia A, Kushibar, Kaisar, Riklund, Katrine, Mori, Kensaku, Marias, Kostas, Amugongo, Lameck M, Fromont, Lauren A, Maier-Hein, Lena, Alberich, Leonor Cerdá, Rittner, Leticia, Phiri, Lighton, Marrakchi-Kacem, Linda, Donoso-Bach, Lluís, Martí-Bonmatí, Luis, Cardoso, M Jorge, Bobowicz, Maciej, Shabani, Mahsa, Tsiknakis, Manolis, Zuluaga, Maria A, Bielikova, Maria, Fritzsche, Marie-Christine, Camacho, Marina, Linguraru, Marius George, Wenzel, Markus, De Bruijne, Marleen, Tolsgaard, Martin G, Ghassemi, Marzyeh, Ashrafuzzaman, Md, Goisauf, Melanie, Yaqub, Mohammad, Abadía, Mónica Cano, Mahmoud, Mukhtar M E, Elattar, Mustafa, Rieke, Nicola, Papanikolaou, Nikolaos, Lazrak, Noussair, Díaz, Oliver, Salvado, Olivier, Pujol, Oriol, Sall, Ousmane, Guevara, Pamela, Gordebeke, Peter, Lambin, Philippe, Brown, Pieta, Abolmaesumi, Purang, Dou, Qi, Lu, Qinghua, Osuala, Richard, Nakasi, Rose, Zhou, S Kevin, Napel, Sandy, Colantonio, Sara, Albarqouni, Shadi, Joshi, Smriti, Carter, Stacy, Klein, Stefan, Petersen, Steffen E, Aussó, Susanna, Awate, Suyash, Raviv, Tammy Riklin, Cook, Tessa, Mutsvangwa, Tinashe E M, Rogers, Wendy A, Niessen, Wiro J, Puig-Bosch, Xènia, Zeng, Yi, Mohammed, Yunusa G, Aquino, Yves Saint James, Salahuddin, Zohaib, Starmans, Martijn P A
Despite major advances in artificial intelligence (AI) for medicine and healthcare, the deployment and adoption of AI technologies remain limited in real-world clinical practice. In recent years, concerns have been raised about the technical, clinica
Externí odkaz:
http://arxiv.org/abs/2309.12325