Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Meier, Caleb"'
Autor:
Holst, Michael, Meier, Caleb
In this article we further develop the solution theory for the Einstein constraint equations on an n-dimensional, asymptotically Euclidean manifold M with interior boundary S. Building on recent results for both the asymptotically Euclidean and compa
Externí odkaz:
http://arxiv.org/abs/1403.4549
In this note we prove two existence theorems for the Einstein constraint equations on asymptotically Euclidean manifolds. The first is for arbitrary mean curvature functions with restrictions on the size of the transverse-traceless data and the non-g
Externí odkaz:
http://arxiv.org/abs/1312.0535
Autor:
Holst, Michael, Meier, Caleb
The conformal method has been effective for parametrizing solutions to the Einstein constraint equations on closed 3-manifolds. However, it is still not well-understood; for example, existence of solutions to the conformal equations for zero or negat
Externí odkaz:
http://arxiv.org/abs/1306.1210
Given a collection P of k^2 commutative polynomials in 2k^2 commutative variables, the objective is to find a condensed representation of these polynomials in terms of a single non-commutative polynomial p(X,Y) in two k x k matrix variables X and Y.
Externí odkaz:
http://arxiv.org/abs/1212.0891
Autor:
Holst, Michael, Meier, Caleb
It is well-known that solutions to the conformal formulation of the Einstein constraint equations are unique in the cases of constant mean curvature (CMC) and near constant mean curvature (near-CMC). However, the new far-from-constant mean curvature
Externí odkaz:
http://arxiv.org/abs/1210.2156
Autor:
Holst, Michael, Meier, Caleb
In this article we investigate the existence of a solution to a semilinear, elliptic, partial differential equation with distributional coefficients and data. The problem we consider is a generalization of the Lichnerowicz equation that one encounter
Externí odkaz:
http://arxiv.org/abs/1112.0351
Autor:
Holst, Michael1 mholst@math.ucsd.edu, Meier, Caleb1 c1meier@math.ucsd.edu, Tsogtgerel, G.1 gantumur@math.mcgill.ca
Publikováno v:
Communications in Mathematical Physics. Jan2018, Vol. 357 Issue 2, p467-517. 51p.
Autor:
Holst, Michael1 mholst@math.ucsd.edu, Meier, Caleb1 meiercaleb@gmail.com
Publikováno v:
Acta Applicandae Mathematicae. Apr2014, Vol. 130 Issue 1, p163-203. 41p.
Autor:
Meier, Caleb
Publikováno v:
Meier, Caleb; & Meier, Caleb. (2012). Generalized solutions and non-uniqueness in the Einstein constraint equations : some unresolved issues with the conformal formulation. UC San Diego: Retrieved from: http://www.escholarship.org/uc/item/1kc5p8hd
In this thesis we consider the problem of determining solutions to the conformal formulation of the Einstein constraint equations with low regularity coefficients and then discuss certain non-uniqueness properties of the conformal formulation of the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______325::8b47652f18cabffd24ecfdd255b25cdf
http://www.escholarship.org/uc/item/1kc5p8hd
http://www.escholarship.org/uc/item/1kc5p8hd
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.