Zobrazeno 1 - 10
of 2 227
pro vyhledávání: '"Mehta, A. B."'
Autor:
Pradeep, Soorya, Imran, Alishba, Liu, Ziwen, Theodoro, Taylla Milena, Hirata-Miyasaki, Eduardo, Ivanov, Ivan, Bhave, Madhura, Khadka, Sudip, Woosley, Hunter, Arias, Carolina, Mehta, Shalin B.
We introduce DynaCLR, a self-supervised framework for modeling cell dynamics via contrastive learning of representations of time-lapse datasets. Live cell imaging of cells and organelles is widely used to analyze cellular responses to perturbations.
Externí odkaz:
http://arxiv.org/abs/2410.11281
Autor:
Raghuwanshi, Prasoon, López, Onel Luis Alcaraz, Mehta, Neelesh B., Alves, Hirley, Latva-aho, Matti
Efficient Random Access (RA) is critical for enabling reliable communication in Industrial Internet of Things (IIoT) networks. Herein, we propose a deep reinforcement learning based distributed RA scheme, entitled Neural Network-Based Bandit (NNBB),
Externí odkaz:
http://arxiv.org/abs/2407.16877
Autor:
van Sambeek, Roos M.F., Mehta, Shamir B., Flapper, Carlijn, Fokkinga, Wietske A., Loomans, Bas A.C., Pereira-Cenci, Tatiana
Publikováno v:
In Journal of Dentistry December 2024 151
Publikováno v:
In Journal of the American Medical Directors Association December 2024 25(12)
Unmanned aerial vehicles (UAVs) play an increasingly important role in military, public, and civilian applications, where providing connectivity to UAVs is crucial for its real-time control, video streaming, and data collection. Considering that cell
Externí odkaz:
http://arxiv.org/abs/2101.10736
Publikováno v:
In Applied Thermal Engineering 15 February 2024 239
Publikováno v:
In Applied Thermal Engineering 10 January 2024 236 Part D
Autor:
Patanwala, Asad E., Flannery, Alexander H., Mehta, Hemalkumar B., Hills, Thomas E., McArthur, Colin J., Erstad, Brian L.
Publikováno v:
In Chest
Purpose: This work proposes a novel approach to efficiently generate MR fingerprints for MR fingerprinting (MRF) problems based on the unsupervised deep learning model generative adversarial networks (GAN). Methods: The GAN model is adopted and modif
Externí odkaz:
http://arxiv.org/abs/2004.02270
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.