Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Mehrdad Kiani-Oshtorjani"'
Publikováno v:
Water, Vol 15, Iss 23, p 4055 (2023)
Measuring bathymetry has always been a major scientific and technological challenge. In this work, we used a deep learning technique for inferring bathymetry from the depth-averaged velocity field. The training of the neural network is based on 5742
Externí odkaz:
https://doaj.org/article/2418ada76545464c90f629e2e34e4c02
Publikováno v:
Journal of Geophysical Research: Earth Surface. 128
Publikováno v:
Physical Review E, 103 (6)
The segregation of large intruders in an agitated granular system is of high practical relevance, yet the accurate modeling of the segregation (lift) force is challenging as a general formulation of a granular equivalent of a buoyancy force remains e
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::299b0d795c8924a82cae2945042a2429
https://hdl.handle.net/20.500.11850/490787
https://hdl.handle.net/20.500.11850/490787
Publikováno v:
International Journal of Heat and Mass Transfer. 187:122539
The conjugate heat transfer in mixtures of a fluid and single granular clusters is studied in this paper using a novel lattice Boltzmann method (LBM) programmed for parallel computation on the graphics processing unit (GPU). The LBM is validated for
Publikováno v:
Water (20734441); Dec2023, Vol. 15 Issue 23, p4055, 23p
Publikováno v:
Journal of Geophysical Research. Earth Surface; Mar2023, Vol. 128 Issue 3, p1-21, 21p