Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Mehmet Yamac"'
Autor:
Alexander Ulrichsen, Paul Murray, Stephen Marshall, Moncef Gabbouj, Serkan Kiranyaz, Mehmet Yamac, Nour Aburaed
Publikováno v:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 17, Pp 1470-1484 (2024)
Hyperspectral imaging is a crucial tool in remote sensing, which captures far more spectral information than standard color images. However, the increase in spectral information comes at the cost of spatial resolution. Super-resolution is a popular t
Externí odkaz:
https://doaj.org/article/0f52d6eb2c5d40ac9d8052a8781eeee2
Autor:
Mete Ahishali, Aysen Degerli, Mehmet Yamac, Serkan Kiranyaz, Muhammad E. H. Chowdhury, Khalid Hameed, Tahir Hamid, Rashid Mazhar, Moncef Gabbouj
Publikováno v:
IEEE Access, Vol 9, Pp 41052-41065 (2021)
Coronavirus disease 2019 (COVID-19) has rapidly become a global health concern after its first known detection in December 2019. As a result, accurate and reliable advance warning system for the early diagnosis of COVID-19 has now become a priority.
Externí odkaz:
https://doaj.org/article/f0f11ca2cfba4f81aa338f2fe1d124cc
Publikováno v:
2022 IEEE International Conference on Image Processing (ICIP).
Autor:
Dan Yang, Mehmet Yamac
Publikováno v:
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).
Publikováno v:
Neural networks : the official journal of the International Neural Network Society. 158
In this study, we propose a novel approach to predict the distances of the detected objects in an observed scene. The proposed approach modifies the recently proposed Convolutional Support Estimator Networks (CSENs). CSENs are designed to compute a d
Autor:
Mete Ahishali, Saad Ahmad, Alexandre Angleraud, Deniz Bardakci, Muhammad E.H. Chowdhury, Kateryna Chumachenko, Aysen Degerli, Lukas Esterle, Moncef Gabbouj, Lukas Hedegaard, Negar Heidari, Juana Valeria Hurtado, Turker Ince, Alexandros Iosifidis, Erdal Kayacan, Serkan Kiranyaz, Manos Kirtas, Jonas Le Fevre, Amir Mehman Sefat, Nikos Nikolaidis, Paraskevi Nousi, Illia Oleksiienko, Nikolaos Passalis, Huy Xuan Pham, Roel Pieters, Esa Rahtu, Jenni Raitoharju, Charalampos Symeonidis, Anastasios Tefas, Pavlos Tosidis, Dat Thanh Tran, Konstantinos Tsampazis, Avraam Tsantekidis, Maria Tzelepi, Halil Ibrahim Ugurlu, Abhinav Valada, Mehmet Yamac, Adamantios Zaras
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7269f9f5e45a8abed106ca2627c400cf
https://doi.org/10.1016/b978-0-32-385787-1.00005-1
https://doi.org/10.1016/b978-0-32-385787-1.00005-1
Publikováno v:
Degerli, A, Yamac, M, Ahishali, M, Kiranyaz, S & Gabbouj, M 2022, Medical image analysis . in A Iosifidis & A Tefas (eds), Deep Learning for Robot Perception and Cognition . Academic Press, pp. 541-577 . https://doi.org/10.1016/B978-0-32-385787-1.00025-7
This chapter presents deep learning methodologies for medical imaging tasks. The chapter starts with echocardiography for early detection of myocardial infarction (MI) or commonly known as heart attack. Early and fundamental signs of MI can be visibl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::243cdfe527c9547751559ee84eb3bb4e
https://cris.vtt.fi/en/publications/a7cefba7-c7d9-462c-81ec-cefb15f2a7ea
https://cris.vtt.fi/en/publications/a7cefba7-c7d9-462c-81ec-cefb15f2a7ea
Publikováno v:
2021 IEEE International Conference on Image Processing (ICIP).
Despite their recent success on image denoising, the need for deep and complex architectures still hinders the practical usage of CNNs. Older but computationally more efficient methods such as BM3D remain a popular choice, especially in resource-cons
Publikováno v:
IEEE transactions on neural networks and learning systems.
Support estimation (SE) of a sparse signal refers to finding the location indices of the nonzero elements in a sparse representation. Most of the traditional approaches dealing with SE problems are iterative algorithms based on greedy methods or opti
Publikováno v:
CVPR Workshops
Recently developed deep neural network methods have achieved remarkable performance in the Super Resolution problem when applied to Low Resolution (LR) images that are obtained from High Resolution (HR) images with ideal and predefined downsampling p