Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Mehdi S. M. Sajjadi"'
Autor:
Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch, Yilun Du, Daniel Duckworth, David J Fleet, Dan Gnanapragasam, Florian Golemo, Charles Herrmann, Thomas Kipf, Abhijit Kundu, Dmitry Lagun, Issam Laradji, Hsueh-Ti Liu, Henning Meyer, Yishu Miao, Derek Nowrouzezahrai, Cengiz Oztireli, Etienne Pot, Noha Radwan, Daniel Rebain, Sara Sabour, Mehdi S. M. Sajjadi, Matan Sela, Vincent Sitzmann, Austin Stone, Deqing Sun, Suhani Vora, Ziyu Wang, Tianhao Wu, Kwang Moo Yi, Fangcheng Zhong, Andrea Tagliasacchi
Publikováno v:
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
Autor:
Noha Radwan, Alexey Dosovitskiy, Daniel Duckworth, Ricardo Martin-Brualla, Mehdi S. M. Sajjadi, Jonathan T. Barron
Publikováno v:
CVPR
We present a learning-based method for synthesizing novel views of complex scenes using only unstructured collections of in-the-wild photographs. We build on Neural Radiance Fields (NeRF), which uses the weights of a multilayer perceptron to model th
Publikováno v:
CVPR
Recent advances in video super-resolution have shown that convolutional neural networks combined with motion compensation are able to merge information from multiple low-resolution (LR) frames to generate high-quality images. Current state-of-the-art
Publikováno v:
Computer Vision – ECCV 2018 ISBN: 9783030012182
ECCV (3)
ECCV (3)
State-of-the-art video restoration methods integrate optical flow estimation networks to utilize temporal information. However, these networks typically consider only a pair of consecutive frames and hence are not capable of capturing long-range temp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4ff37d60bdfa2f3189187a8e462f74d3
https://doi.org/10.1007/978-3-030-01219-9_7
https://doi.org/10.1007/978-3-030-01219-9_7
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783319458854
Light field photography captures rich structural information that may facilitate a number of traditional image processing and computer vision tasks. A crucial ingredient in such endeavors is accurate depth recovery. We present a novel framework that
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d0b07cba4ce11962265d9d1b2cc2bbf2
https://doi.org/10.1007/978-3-319-45886-1_35
https://doi.org/10.1007/978-3-319-45886-1_35
Publikováno v:
ICCV
2017 IEEE International Conference on Computer Vision (ICCV 2017)
2017 IEEE International Conference on Computer Vision (ICCV 2017)
Single image super-resolution is the task of inferring a high-resolution image from a single low-resolution input. Traditionally, the performance of algorithms for this task is measured using pixel-wise reconstruction measures such as peak signal-to-
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9b5ba880e489e03a6dd168d39bde8385
Publikováno v:
L@S
Peer grading is the process of students reviewing each others' work, such as homework submissions, and has lately become a popular mechanism used in massive open online courses (MOOCs). Intrigued by this idea, we used it in a course on algorithms and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::aa28d2938d22bea3880138ce77c1d052