Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Mehdi Dorreh"'
Publikováno v:
Journal of Pure and Applied Algebra. 218:1730-1744
Let A be a direct limit of a direct system of Cohen–Macaulay rings. In this paper, we describe the Cohen–Macaulay property of A . Our results indicate that A is not necessarily Cohen–Macaulay. We show A is Cohen–Macaulay under various assumpt
Autor:
Mehdi Dorreh
Publikováno v:
Illinois J. Math. 60, no. 3-4 (2016), 819-831
Let $R$ be a regular local ring containing a field $k$ of characteristic $p$ and $M$ be an $\mathscr{F}$-finite module. In this paper, we study the injective dimension of $M$. We prove that $\operatorname{dim}_{R}(M)-1\leq\operatorname{inj.dim}_{R}(M
Publikováno v:
J. Commut. Algebra 9, no. 1 (2017), 1-19
Let k be a field and R a pure subring of the infinite-dimensional polynomial ring k[X1;...]. If R is generated by monomials, then we show that the equality of height and grade holds for all ideals of R. Also, we show R satisfies the weak Bourbaki unm
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::39e9d87504308dac2386eded71d76109