Zobrazeno 1 - 10
of 2 415
pro vyhledávání: '"Meerson, A."'
Autor:
Valov, Alexander, Meerson, Baruch
The fractional Ornstein-Uhleneck (fOU) process is described by the overdamped Langevin equation $\dot{x}(t)+\gamma x=\sqrt{2 D}\xi(t)$, where $\xi(t)$ is the fractional Gaussian noise with the Hurst exponent $0
Externí odkaz:
http://arxiv.org/abs/2412.02398
Autor:
Meerson, Baruch, Sasorov, Pavel V.
Publikováno v:
Phys. Rev. E 110, 064111 (2024)
We study negative large deviations of the long-time empirical front velocity of the center of mass of the one-sided $N$-BBM ($N$-particle branching Brownian motion) system in one dimension. Employing the macroscopic fluctuation theory, we study the p
Externí odkaz:
http://arxiv.org/abs/2408.14264
Autor:
Meerson, Baruch, Sasorov, Pavel V.
At long times, a fractional Brownian particle in a confining external potential reaches a non-equilibrium (non-Boltzmann) steady state. Here we consider scale-invariant power-law potentials $V(x)\sim |x|^m$, where $m>0$, and employ the optimal fluctu
Externí odkaz:
http://arxiv.org/abs/2407.08461
Autor:
Bettelheim, Eldad, Meerson, Baruch
Publikováno v:
J. Stat. Mech. (2024) 113204
We combine the Macroscopic Fluctuation Theory and the Inverse Scattering Method to determine the full long-time statistics of the energy density $u(x,t)$ averaged over a given spatial interval, $$U =\frac{1}{2L}\int_{-L}^{L}dx\, u(x,t),$$ in a freely
Externí odkaz:
http://arxiv.org/abs/2407.06335
Autor:
Meerson, Baruch
Publikováno v:
Phys. Rev. Res. 6, 033242 (2024)
Han et al. [Phys. Rev. Lett. \textbf{132}, 137102 (2024)] have recently introduced a classical stochastic lattice gas model which, in addition to particle conservation, also conserves the particles' dipole moment. Because of its intrinsic nonlinearit
Externí odkaz:
http://arxiv.org/abs/2406.03462
Publikováno v:
Phys. Rev. E 110, 024138 (2024)
Thermally activated particle motion in disorder potentials is controlled by the large-$\Delta V$ tail of the distribution of height $\Delta V$ of the potential barriers created by the disorder. We employ the optimal fluctuation method to evaluate thi
Externí odkaz:
http://arxiv.org/abs/2405.09850
Autor:
Bettelheim, Eldad, Meerson, Baruch
Publikováno v:
Phys. Rev. E 110, 014101 (2024)
The Simple Inclusion Process (SIP) interpolates between two well-known lattice gas models: the independent random walkers and the Kipnis-Marchioro-Presutti model. Here we study large deviations of nonstationary mass transfer in the SIP at long times
Externí odkaz:
http://arxiv.org/abs/2403.19536
Autor:
Smith, Naftali R., Meerson, Baruch
Publikováno v:
Physica A 639, 129616 (2024)
The local time in an ensemble of particles measures the amount of time the particles spend in the vicinity of a given point in space. Here we study fluctuations of the empirical time average $R= T^{-1}\int_{0}^{T}\rho\left(x=0,t\right)\,dt$ of the de
Externí odkaz:
http://arxiv.org/abs/2311.15286
Publikováno v:
J. Phys. A: Math. Theor. 57 065001 (2024)
We evaluate, in the large-$N$ limit, the complete probability distribution $\mathcal{P}(A,m)$ of the values $A$ of the sum $\sum_{i=1}^{N} |\lambda_i|^m$, where $\lambda_i$ ($i=1,2,\dots, N$) are the eigenvalues of a Gaussian random matrix, and $m$ i
Externí odkaz:
http://arxiv.org/abs/2311.05384
Autor:
Hartmann, A. K., Meerson, B.
Publikováno v:
Phys. Rev. E 109, 014146 (2024)
We study the probability distribution $P(A)$ of the area $A=\int_0^T x(t) dt$ swept under fractional Brownian motion (fB\ m) $x(t)$ until its first passage time $T$ to the origin. The process starts at $t=0$ from a specified point $x=L$. We show that
Externí odkaz:
http://arxiv.org/abs/2310.14003