Zobrazeno 1 - 10
of 114
pro vyhledávání: '"Medvedev, Vladimir A."'
Autor:
Medvedev, Vladimir
Static manifolds with boundary were recently introduced to mathematics. This kind of manifolds appears naturally in the prescribed scalar curvature problem on manifolds with boundary, when the mean curvature of the boundary is also prescribed. They a
Externí odkaz:
http://arxiv.org/abs/2410.15347
Autor:
Medvedev, Vladimir
We consider free boundary minimal submanifolds in geodesic balls in the hyperbolic space $\mathbb H^n$ and in the round upper hemisphere $\mathbb S^n_+$. Recently, Lima and Menezes have found a connection between free boundary minimal surfaces in geo
Externí odkaz:
http://arxiv.org/abs/2311.02409
Autor:
Medvedev, Vladimir, Morozov, Egor
Fraser-Sargent surfaces are free boundary minimal surfaces in the four-dimensional unit Euclidean ball. Extended infinitely they define immersed minimal surfaces in the Euclidean space. In the present paper we compute the Morse index and the nullity
Externí odkaz:
http://arxiv.org/abs/2204.07972
Autor:
Medvedev, Vladimir
In this paper we prove that the Morse index of the critical M\"obius band in the $4-$dimensional Euclidean ball $\mathbb B^4$ equals 5. It is conjectured that this is the only embedded non-orientable free boundary minimal surface of index 5 in $\math
Externí odkaz:
http://arxiv.org/abs/2112.04883
Autor:
Medvedev, Vladimir
Let $\Sigma$ be a compact surface with boundary. For a given conformal class $c$ on $\Sigma$ the functional $\sigma_k^*(\Sigma,c)$ is defined as the supremum of the $k-$th normalized Steklov eigenvalue over all metrics on $c$. We consider the behavio
Externí odkaz:
http://arxiv.org/abs/2004.13776
Externí odkaz:
https://www.ceeol.com//search/book-detail?id=1107084
Autor:
Semenov, Anton P., Gong, Yinghua, Medvedev, Vladimir I., Stoporev, Andrey S., Istomin, Vladimir A., Vinokurov, Vladimir A., Li, Tianduo
Publikováno v:
In Chemical Engineering Science 15 March 2023 268
Autor:
Khaliullin, Farit, Khaliullin, Ayrat, Medvedev, Vladimir, Sayfetdinov, Bulat, Khafizov, Ramil, Nurmiev, Azat
Publikováno v:
E3S Web of Conferences; 11/20/2024, Vol. 592, p1-7, 7p
Autor:
Karpukhin, Mikhail, Medvedev, Vladimir
Let $M$ be a closed smooth manifold. In 1999, L. Friedlander and N. Nadirashvili introduced a new differential invariant $I_1(M)$ using the first normalized nonzero eigenvalue of the Lalpace-Beltrami operator $\Delta_g$ of a Riemannian metric $g$. Th
Externí odkaz:
http://arxiv.org/abs/1901.09443
It was proved by Montiel and Ros that for each conformal structure on a compact surface there is at most one metric which admits a minimal immersion into some unit sphere by first eigenfunctions. We generalize this theorem to the setting of metrics w
Externí odkaz:
http://arxiv.org/abs/1711.05916