Zobrazeno 1 - 10
of 65
pro vyhledávání: '"Medium-term load forecasting"'
Autor:
Paweł Pełka
Publikováno v:
Energies, Vol 16, Iss 2, p 827 (2023)
This article provides a solution based on statistical methods (ARIMA, ETS, and Prophet) to predict monthly power demand, which approximates the relationship between historical and future demand patterns. The energy demand time series shows seasonal f
Externí odkaz:
https://doaj.org/article/ce75e9ac00624e42be36ee47c5a3875e
Autor:
Ravele, Thakhani
MSc (Statistics)
Department of Statistics
Forecasting of electricity peak demand levels is important for decision makers in Eskom. The overall objective of this study was to develop medium term load forecasting models which will help decisi
Department of Statistics
Forecasting of electricity peak demand levels is important for decision makers in Eskom. The overall objective of this study was to develop medium term load forecasting models which will help decisi
Externí odkaz:
http://hdl.handle.net/11602/1165
Autor:
Omaji Samuel, Fahad A. Alzahrani, Raja Jalees Ul Hussen Khan, Hassan Farooq, Muhammad Shafiq, Muhammad Khalil Afzal, Nadeem Javaid
Publikováno v:
Entropy, Vol 22, Iss 1, p 68 (2020)
Over the last decades, load forecasting is used by power companies to balance energy demand and supply. Among the several load forecasting methods, medium-term load forecasting is necessary for grid’s maintenance planning, settings of electricity p
Externí odkaz:
https://doaj.org/article/38ee36a5432b4778bfc047bac894e7a5
Autor:
FATİH BAL, Fatma Yaprakdal
Publikováno v:
Volume: 12, Issue: 2 102-107
European Journal of Technique (EJT)
European Journal of Technique
European Journal of Technique (EJT)
European Journal of Technique
Electrical load forecasting (ELF) is gaining importance especially due to the severe impact of climate change on electrical energy usage and dynamically evolving smart grid technologies in the last decades. In this regard, medium-term load forecastin
Publikováno v:
Energies, Vol 12, Iss 1, p 149 (2019)
Time series analysis using long short term memory (LSTM) deep learning is a very attractive strategy to achieve accurate electric load forecasting. Although it outperforms most machine learning approaches, the LSTM forecasting model still reveals a l
Externí odkaz:
https://doaj.org/article/713d4388c99b4285973b0e37af7c44f9
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Energies, Vol 11, Iss 7, p 1636 (2018)
Background: With the development of smart grids, accurate electric load forecasting has become increasingly important as it can help power companies in better load scheduling and reduce excessive electricity production. However, developing and select
Externí odkaz:
https://doaj.org/article/ad514c7fb4344cfc9bf90f8ddf302d07
Autor:
Muhammad Khalil Afzal, Raja Jalees ul Hussen Khan, Fahad Ahmed Al-Zahrani, Nadeem Javaid, Omaji Samuel, Hassan Farooq, Muhammad Shafiq
Publikováno v:
Entropy
Volume 22
Issue 1
Entropy, Vol 22, Iss 1, p 68 (2020)
Volume 22
Issue 1
Entropy, Vol 22, Iss 1, p 68 (2020)
Over the last decades, load forecasting is used by power companies to balance energy demand and supply. Among the several load forecasting methods, medium-term load forecasting is necessary for grid&rsquo
s maintenance planning, settings of elec
s maintenance planning, settings of elec
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Conference
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.