Zobrazeno 1 - 10
of 334
pro vyhledávání: '"Medina, José Luis"'
Let $M^{(k)}_{d}(n)$ be the manifold of $n$-tuples $(x_1,\ldots,x_n)\in(\mathbb{R}^d)^n$ having non-$k$-equal coordinates. We show that, for $d\geq2$, $M^{(3)}_{d}(n)$ is rationally formal if and only if $n\leq 6$. This stands in sharp contrast with
Externí odkaz:
http://arxiv.org/abs/2401.01449
Publikováno v:
Reis: Revista Española de Investigaciones Sociológicas, 2022 Oct 01(180), 65-83.
Externí odkaz:
https://www.jstor.org/stable/27190994
We compute the Lusternik-Schnirelmann category and the topological complexity of no $k$-equal manifolds $M^{(k)}_d(n)$ for certain values of $d$, $k$ and $n$. This includes instances where $M^{(k)}_d(n)$ is known to be rationally non-formal. The key
Externí odkaz:
http://arxiv.org/abs/2007.08704
Publikováno v:
EPTCS 306, 2019, pp. 323-329
In this article we present an implementation of non-monotonic reasoning in an embedded system. As a part of an autonomous motor-glider, it simulates piloting decisions of an airplane. A real pilot must take care not only about the information arising
Externí odkaz:
http://arxiv.org/abs/1907.13305
Publikováno v:
Homology Homotopy Appl. 23 (2021) 275-296
We compute the Lusternik-Schnirelmann category (LS-cat) and the higher topological complexity ($TC_s$, $s\geq2$) of the "no-$k$-equal" configuration space Conf$_k(\mathbb{R},n)$. This yields (with $k=3$) the LS-cat and the higher topological complexi
Externí odkaz:
http://arxiv.org/abs/1902.06190
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
The aim of this paper is to give a (discrete) Morse theoretic proof of the fact that the $k$-th skeleton of the flag complex $\mathcal{F}$, associated to the lattice of subspaces of a finite dimensional vector space, is homotopy equivalent to a wedge
Externí odkaz:
http://arxiv.org/abs/1810.04248