Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Mead, Lewis"'
Publikováno v:
European Journal of Mathematics, 2022, 8, 1-32
Motivated by potential applications in network theory, engineering and computer science, we study $r$-ample simplicial complexes. These complexes can be viewed as finite approximations to the Rado complex which has a remarkable property of {\it indes
Externí odkaz:
http://arxiv.org/abs/2012.01483
A Rado simplicial complex X is a generalisation of the well-known Rado graph. X is a countable simplicial complex which contains any countable simplicial complex as its induced subcomplex. The Rado simplicial complex is highly symmetric, it is homoge
Externí odkaz:
http://arxiv.org/abs/1912.02515
Autor:
Mead, Lewis
In 1983 Kalai proved an incredible generalisation of Cayley's formula for the number of trees on a labelled vertex set to a formula for a class of $r$-dimensional simplicial complexes. These simplicial complexes generalise trees by means of being hom
Externí odkaz:
http://arxiv.org/abs/1912.02078
Autor:
Farber, Michael, Mead, Lewis
We describe topology of random simplicial complexes in the lower and upper models in the medial regime, i.e. under the assumption that the probability parameters $p_\sigma$ approach neither $0$ nor $1$. We show that nontrivial Betti numbers of typica
Externí odkaz:
http://arxiv.org/abs/1907.00653
In this paper we discuss two general models of random simplicial complexes which we call the lower and the upper models. We show that these models are dual to each other with respect to combinatorial Alexander duality. The behaviour of the Betti numb
Externí odkaz:
http://arxiv.org/abs/1901.09578
Autor:
Farber, Michael, Mead, Lewis
Publikováno v:
In Topology and its Applications 1 March 2020 272
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
European Journal of Mathematics; Mar2022, Vol. 8 Issue 1, p1-32, 32p
Publikováno v:
Journal of Applied & Computational Topology; Jun2021, Vol. 5 Issue 2, p339-356, 18p