Zobrazeno 1 - 10
of 98
pro vyhledávání: '"McQuillan, Michael"'
Autor:
McQuillan, Michael
We show how to extend Epstein's algebraic transversality principles for rational maps $f$ of ${\mathbb P}^1_{\mathbb C}$ to infinite forward invariant subsets of the Fatou set. The key, at least conceptually, to doing this is to have a topos of $f$ i
Externí odkaz:
http://arxiv.org/abs/2311.02518
Autor:
Harris, Daniel N., Platt, Alexander, Hansen, Matthew E.B., Fan, Shaohua, McQuillan, Michael A., Nyambo, Thomas, Mpoloka, Sununguko Wata, Mokone, Gaonyadiwe George, Belay, Gurja, Fokunang, Charles, Njamnshi, Alfred K., Tishkoff, Sarah A.
Publikováno v:
In Current Biology 20 November 2023 33(22):4905-4916
Autor:
McQuillan, Michael, Marzo, Gianluca
The main theorem, I.a, is the existence for excellent Deligne-Mumford champ of characteristic zero of a resolution functor independent of the resolution process itself. Perceived wisdom was that this was impossible, but the counterexamples overlooked
Externí odkaz:
http://arxiv.org/abs/1906.06745
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
McQuillan, Michael
Broadly speaking the present is a homotopy complement to the book of Giraud, albeit in a couple of different ways. In the first place there is a representability theorem for maps to a topological champ (a.k.a. stack) and whence an extremely convenien
Externí odkaz:
http://arxiv.org/abs/1507.00797
Autor:
McQuillan, Michael, Pacienza, Gianluca
We make some remarks about bubbling on, not necessarily proper, champs de Deligne-Mumford, i.e. compactification of the space of mappings from a given (wholly scheme like) curve, so, in particular, on quasi-projective projective varieties. Under hypo
Externí odkaz:
http://arxiv.org/abs/1211.0203
Autor:
McQuillan, Michael
We formulate and prove an optimal version for quasi-projective surfaces of A. Bloch's dictum, "Nihil est in infinito quod prius non fuerit in finito" by way of a complement to a theorem of J. Duval.
Externí odkaz:
http://arxiv.org/abs/1209.5402
Autor:
McQuillan, Michael
The present constitutes the key lemma which was hitherto missing in the author's proof of, inter alia, the Green-Griffiths conjecture for surfaces with enough 2-jets, e.g. $13\mathrm{c}_1^2> 9\mathrm{c}_2$. As to why this is so is not the immediate c
Externí odkaz:
http://arxiv.org/abs/1207.1155
Autor:
McQuillan, Michael, Panazzolo, Daniel
We investigate the structure of fully non-linear P.D.E.'s in holomorphic functions, with emphasis on the functorial generalisation of so called "irregular" O.D.E.'s. Highlights are an implicit function theorem removing the perturbation conditions of
Externí odkaz:
http://arxiv.org/abs/1203.3045
Autor:
Rice, Amber M., McQuillan, Michael A.
Publikováno v:
Proceedings: Biological Sciences, 2018 May . 285(1879), 1-8.
Externí odkaz:
https://www.jstor.org/stable/26544778