Zobrazeno 1 - 10
of 230
pro vyhledávání: '"McPhee, John P."'
Current data analysis for the Canadian Olympic fencing team is primarily done manually by coaches and analysts. Due to the highly repetitive, yet dynamic and subtle movements in fencing, manual data analysis can be inefficient and inaccurate. We prop
Externí odkaz:
http://arxiv.org/abs/2204.09434
Current research on Deep Reinforcement Learning (DRL) for automated on-ramp merging neglects vehicle powertrain and dynamics. This work considers automated on-ramp merging for a power-split Plug-In Hybrid Electric Vehicle (PHEV), the 2015 Toyota Priu
Externí odkaz:
http://arxiv.org/abs/2203.03113
In keypoint estimation tasks such as human pose estimation, heatmap-based regression is the dominant approach despite possessing notable drawbacks: heatmaps intrinsically suffer from quantization error and require excessive computation to generate an
Externí odkaz:
http://arxiv.org/abs/2111.08557
Existing multi-camera solutions for automatic scorekeeping in steel-tip darts are very expensive and thus inaccessible to most players. Motivated to develop a more accessible low-cost solution, we present a new approach to keypoint detection and appl
Externí odkaz:
http://arxiv.org/abs/2105.09880
Neural architecture search has proven to be highly effective in the design of efficient convolutional neural networks that are better suited for mobile deployment than hand-designed networks. Hypothesizing that neural architecture search holds great
Externí odkaz:
http://arxiv.org/abs/2011.08446
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
This study compares Deep Reinforcement Learning (DRL) and Model Predictive Control (MPC) for Adaptive Cruise Control (ACC) design in car-following scenarios. A first-order system is used as the Control-Oriented Model (COM) to approximate the accelera
Externí odkaz:
http://arxiv.org/abs/1910.12047
Deep Reinforcement Learning (DRL) is used here for decentralized decision-making and longitudinal control for high-speed on-ramp merging. The DRL environment state includes the states of five vehicles: the merging vehicle, along with two preceding an
Externí odkaz:
http://arxiv.org/abs/1909.12967
The majority of current studies on autonomous vehicle control via deep reinforcement learning (DRL) utilize point-mass kinematic models, neglecting vehicle dynamics which includes acceleration delay and acceleration command dynamics. The acceleration
Externí odkaz:
http://arxiv.org/abs/1905.08314