Zobrazeno 1 - 10
of 275
pro vyhledávání: '"McNeal, J."'
Autor:
Edholm, L. D., McNeal, J. D.
Publikováno v:
J. Geom. Anal. 30 (2020), no. 2, 1293-1311
Sobolev irregularity of the Bergman projection on a family of domains containing the Hartogs triangle is shown. On the Hartogs triangle itself, a sub-Bergman projection is shown to satisfy better Sobolev norm estimates than its Bergman projection.
Externí odkaz:
http://arxiv.org/abs/1904.04383
Publikováno v:
Adv. Math. 341 (2019), 616-656
Expected duality and approximation properties are shown to fail on Bergman spaces of domains in $\mathbb{C}^n$, via examples. When the domain admits an operator satisfying certain mapping properties, positive duality and approximation results are pro
Externí odkaz:
http://arxiv.org/abs/1804.02746
Autor:
McNeal, J. D., Xiong, J.
A classical observation of Riesz says that truncations of a general $\sum_{n=0}^\infty a_n z^n$ in the Hardy space $H^1$ do not converge in $H^1$. A substitute positive result is proved: these partial sums always converge in the Bergman norm $A^1$. T
Externí odkaz:
http://arxiv.org/abs/1803.10822
Autor:
Edholm, L. D., McNeal, J. D.
Publikováno v:
J Geom Anal (2017) 27: 2658-2683
Regularity and irregularity of the Bergman projection on $L^p$ spaces is established on a natural family of bounded, pseudoconvex domains. The family is parameterized by a real variable $\gamma$. A surprising consequence of the analysis is that, when
Externí odkaz:
http://arxiv.org/abs/1605.06223
Autor:
Edholm, L. D., McNeal, J. D.
Publikováno v:
Proc. Amer. Math. Soc. 144 (2016), 2185-2196
A class of pseudoconvex domains in $\mathbb{C}^{n}$ generalizing the Hartogs triangle is considered. The $L^p$ boundedness of the Bergman projection associated to these domains is established, for a restricted range of $p$ depending on the "fatness"
Externí odkaz:
http://arxiv.org/abs/1502.07302
Autor:
Herbig, A. -K., McNeal, J. D.
A sufficient condition for $\bar{\partial}$ to have closed range is given for pseudoconvex, possibly unbounded domains in $\mathbb{C}^n$.
Comment: 17 pgs; Equality (8.9) in the previous version is incorrect, hence the presented proof for the clo
Comment: 17 pgs; Equality (8.9) in the previous version is incorrect, hence the presented proof for the clo
Externí odkaz:
http://arxiv.org/abs/1410.3559
Autor:
Herbig, A. -K., McNeal, J. D.
Publikováno v:
Illinois Journal of Mathematics, vol. 56, no. 1, Spring 2012, pgs. 195--211
A new proof of Oka's lemma is given for smoothly bounded, pseudoconvex domains $D\subset\mathbb{C}^n$. The method of proof is then also applied to other convexity-like hypotheses on the boundary of $D$.
Externí odkaz:
http://arxiv.org/abs/1112.5138
Autor:
Herbig, A. -K., McNeal, J. D.
Publikováno v:
Math. Ann. 354 (2012), no. 2, 427--449
Let B be the Bergman projection associated to a domain on which the dbar-Neumann operator is compact. We show that arbitrary L^2 derivatives of Bf are controlled by derivatives of f taken in a single, distinguished direction. As a consequence, functi
Externí odkaz:
http://arxiv.org/abs/1010.5462
Autor:
Herbig, A. -K., McNeal, J. D.
Publikováno v:
J. Geom. Anal. 22 (2012), no. 2, 433--454
We give three proofs of the fact that a smoothly bounded, convex domain in R^n has smooth defining functions whose Hessians are non-negative definite in a neighborhood of the boundary of the domain.
Comment: 21 pages
Comment: 21 pages
Externí odkaz:
http://arxiv.org/abs/0912.4653
Autor:
Edholm, L. D., McNeal, J. D.
Publikováno v:
Proceedings of the American Mathematical Society, 2016 May 01. 144(5), 2185-2196.
Externí odkaz:
https://www.jstor.org/stable/procamermathsoci.144.5.2185