Zobrazeno 1 - 10
of 65
pro vyhledávání: '"McHenry, Kenton"'
The lack of quality labeled data is one of the main bottlenecks for training Deep Learning models. As the task increases in complexity, there is a higher penalty for overfitting and unstable learning. The typical paradigm employed today is Self-Super
Externí odkaz:
http://arxiv.org/abs/2309.03367
As software has become more essential to research across disciplines, and as the recognition of this fact has grown, the importance of professionalizing the development and maintenance of this software has also increased. The community of software pr
Externí odkaz:
http://arxiv.org/abs/2210.04275
Publikováno v:
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, 2021, pp. 1409-1415
A core objective of the TERRA-REF project was to generate an open-access reference dataset for the evaluation of sensing technologies to study plants under field conditions. The TERRA-REF program deployed a suite of high-resolution, cutting edge tech
Externí odkaz:
http://arxiv.org/abs/2107.14072
Autor:
Huerta, E. A., Khan, Asad, Davis, Edward, Bushell, Colleen, Gropp, William D., Katz, Daniel S., Kindratenko, Volodymyr, Koric, Seid, Kramer, William T. C., McGinty, Brendan, McHenry, Kenton, Saxton, Aaron
Publikováno v:
Journal of Big Data volume 7, Article number: 88 (2020)
Significant investments to upgrade and construct large-scale scientific facilities demand commensurate investments in R&D to design algorithms and computing approaches to enable scientific and engineering breakthroughs in the big data era. Innovative
Externí odkaz:
http://arxiv.org/abs/2003.08394
Autor:
Huerta, E. A., Allen, Gabrielle, Andreoni, Igor, Antelis, Javier M., Bachelet, Etienne, Berriman, Bruce, Bianco, Federica, Biswas, Rahul, Carrasco, Matias, Chard, Kyle, Cho, Minsik, Cowperthwaite, Philip S., Etienne, Zachariah B., Fishbach, Maya, Förster, Francisco, George, Daniel, Gibbs, Tom, Graham, Matthew, Gropp, William, Gruendl, Robert, Gupta, Anushri, Haas, Roland, Habib, Sarah, Jennings, Elise, Johnson, Margaret W. G., Katsavounidis, Erik, Katz, Daniel S., Khan, Asad, Kindratenko, Volodymyr, Kramer, William T. C., Liu, Xin, Mahabal, Ashish, Marka, Zsuzsa, McHenry, Kenton, Miller, Jonah, Moreno, Claudia, Neubauer, Mark, Oberlin, Steve, Olivas, Alexander R., Petravick, Donald, Rebei, Adam, Rosofsky, Shawn, Ruiz, Milton, Saxton, Aaron, Schutz, Bernard F., Schwing, Alex, Seidel, Ed, Shapiro, Stuart L., Shen, Hongyu, Shen, Yue, Singer, Leo, Sipőcz, Brigitta M., Sun, Lunan, Towns, John, Tsokaros, Antonios, Wei, Wei, Wells, Jack, Williams, Timothy J., Xiong, Jinjun, Zhao, Zhizhen
Publikováno v:
Nature Reviews Physics volume 1, pages 600-608 (2019)
Multi-messenger astrophysics is a fast-growing, interdisciplinary field that combines data, which vary in volume and speed of data processing, from many different instruments that probe the Universe using different cosmic messengers: electromagnetic
Externí odkaz:
http://arxiv.org/abs/1911.11779
Modern research in the sciences, engineering, humanities, and other fields depends on software, and specifically, research software. Much of this research software is developed in universities, by faculty, postdocs, students, and staff. In this paper
Externí odkaz:
http://arxiv.org/abs/1903.00732
Autor:
Allen, Gabrielle, Andreoni, Igor, Bachelet, Etienne, Berriman, G. Bruce, Bianco, Federica B., Biswas, Rahul, Kind, Matias Carrasco, Chard, Kyle, Cho, Minsik, Cowperthwaite, Philip S., Etienne, Zachariah B., George, Daniel, Gibbs, Tom, Graham, Matthew, Gropp, William, Gupta, Anushri, Haas, Roland, Huerta, E. A., Jennings, Elise, Katz, Daniel S., Khan, Asad, Kindratenko, Volodymyr, Kramer, William T. C., Liu, Xin, Mahabal, Ashish, McHenry, Kenton, Miller, J. M., Neubauer, M. S., Oberlin, Steve, Olivas Jr, Alexander R., Rosofsky, Shawn, Ruiz, Milton, Saxton, Aaron, Schutz, Bernard, Schwing, Alex, Seidel, Ed, Shapiro, Stuart L., Shen, Hongyu, Shen, Yue, Sipőcz, Brigitta M., Sun, Lunan, Towns, John, Tsokaros, Antonios, Wei, Wei, Wells, Jack, Williams, Timothy J., Xiong, Jinjun, Zhao, Zhizhen
This report provides an overview of recent work that harnesses the Big Data Revolution and Large Scale Computing to address grand computational challenges in Multi-Messenger Astrophysics, with a particular emphasis on real-time discovery campaigns. A
Externí odkaz:
http://arxiv.org/abs/1902.00522
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Brantley, Susan L., Wen, Tao, Agarwal, Deborah A., Catalano, Jeffrey G., Schroeder, Paul A., Lehnert, Kerstin, Varadharajan, Charuleka, Pett-Ridge, Julie, Engle, Mark, Castronova, Anthony M., Hooper, Richard P., Ma, Xiaogang, Jin, Lixin, McHenry, Kenton, Aronson, Emma, Shaughnessy, Andrew R., Derry, Louis A., Richardson, Justin, Bales, Jerad, Pierce, Eric M.
Publikováno v:
In Computers and Geosciences December 2021 157
Autor:
Kenyon, Norma S. *, Willman, Melissa A., Han, Dongmei, Leeman, Rachel S., Rabassa, Alex, Diaz, Waldo L., Geary, James C., Poumian-Ruiz, Ena, Griswold, Anthony J., Van Booven, Derek J., Thompson, Ryan, Ordoukhanian, Philip, Head, Steven R., Kenyon, Norman M., McHenry, Kenton G., Salomon, Daniel R., Bartholomew, Amelia M., Berman, Dora M.
Publikováno v:
In American Journal of Transplantation November 2021 21(11):3524-3537