Zobrazeno 1 - 10
of 1 673
pro vyhledávání: '"McEneaney"'
The present study presents a novel application for normalizing flows for domain adaptation. The study investigates the ability of flow based neural networks to improve signal extraction of $\Lambda$ Hyperons at CLAS12. Normalizing Flows can help mode
Externí odkaz:
http://arxiv.org/abs/2403.14076
Autor:
Allaire, C., Ammendola, R., Aschenauer, E. -C., Balandat, M., Battaglieri, M., Bernauer, J., Bondì, M., Branson, N., Britton, T., Butter, A., Chahrour, I., Chatagnon, P., Cisbani, E., Cline, E. W., Dash, S., Dean, C., Deconinck, W., Deshpande, A., Diefenthaler, M., Ent, R., Fanelli, C., Finger, M., Finger, Jr., M., Fol, E., Furletov, S., Gao, Y., Giroux, J., Waduge, N. C. Gunawardhana, Harish, R., Hassan, O., Hegde, P. L., Hernández-Pinto, R. J., Blin, A. Hiller, Horn, T., Huang, J., Jayakodige, D., Joo, B., Junaid, M., Karande, P., Kriesten, B., Elayavalli, R. Kunnawalkam, Lin, M., Liu, F., Liuti, S., Matousek, G., McEneaney, M., McSpadden, D., Menzo, T., Miceli, T., Mikuni, V., Montgomery, R., Nachman, B., Nair, R. R., Niestroy, J., Oregon, S. A. Ochoa, Oleniacz, J., Osborn, J. D., Paudel, C., Pecar, C., Peng, C., Perdue, G. N., Phelps, W., Purschke, M. L., Rajput, K., Ren, Y., Renteria-Estrada, D. F., Richford, D., Roy, B. J., Roy, D., Sato, N., Satogata, T., Sborlini, G., Schram, M., Shih, D., Singh, J., Singh, R., Siodmok, A., Stone, P., Stevens, J., Suarez, L., Suresh, K., Tawfik, A. -N., Acosta, F. Torales, Tran, N., Trotta, R., Twagirayezu, F. J., Tyson, R., Volkova, S., Vossen, A., Walter, E., Whiteson, D., Williams, M., Wu, S., Zachariou, N., Zurita, P.
The Electron-Ion Collider (EIC), a state-of-the-art facility for studying the strong force, is expected to begin commissioning its first experiments in 2028. This is an opportune time for artificial intelligence (AI) to be included from the start at
Externí odkaz:
http://arxiv.org/abs/2307.08593
Autor:
McEneaney, Matthew, Vossen, Anselm
Publikováno v:
JINST 18 P06002 (2023)
Machine learning methods and in particular Graph Neural Networks (GNNs) have revolutionized many tasks within the high energy physics community. We report on the novel use of GNNs and a domain-adversarial training method to identify $\Lambda$ hyperon
Externí odkaz:
http://arxiv.org/abs/2302.05481
Autor:
ATHENA Collaboration, Adam, J., Adamczyk, L., Agrawal, N., Aidala, C., Akers, W., Alekseev, M., Allen, M. M., Ameli, F., Angerami, A., Antonioli, P., Apadula, N. J., Aprahamian, A., Armstrong, W., Arratia, M., Arrington, J. R., Asaturyan, A., Aschenauer, E. C., Augsten, K., Aune, S., Bailey, K., Baldanza, C., Bansal, M., Barbosa, F., Barion, L., Barish, K., Battaglieri, M., Bazilevsky, A., Behera, N. K., Berdnikov, V., Bernauer, J., Berriaud, C., Bhasin, A., Bhattacharya, D. S., Bielcik, J., Bielcikova, J., Bissolotti, C., Boeglin, W., Bondì, M., Borri, M., Bossu, F., Bouyjou, F., Brandenburg, J. D., Bressan, A., Brooks, M., Bueltmann, S. L., Byer, D., Caines, H., Sanchez, M. Calderon de la Barca, Calvelli, V., Camsonne, A., Cappelli, L., Capua, M., Castro, M., Cavazza, D., Cebra, D., Celentano, A., Chakaberia, I., Chan, B., Chang, W., Chartier, M., Chatterjee, C., Chen, D., Chen, J., Chen, K., Chen, Z., Chetri, H., Chiarusi, T., Chiosso, M., Chu, X., Chwastowski, J. J., Cicala, G., Cisbani, E., Cline, E., Cloet, I., Colella, D., Contalbrigo, M., Contin, G., Corliss, R., Corrales-Morales, Y., Crafts, J., Crawford, C., Cruz-Torres, R., D'Ago, D., D'Angelo, A., D'Hose, N., Dainton, J., Torre, S. Dalla, Dasgupta, S. S., Dash, S., Dashyan, N., Datta, J., Daugherity, M., De Vita, R., Deconinck, W., Defurne, M., Dehmelt, K., Del Dotto, A., Delcarro, F., Dellacasa, G., Demiroglu, Z. S., Deptuch, G. W., Desai, V., Deshpande, A., Devereaux, K., Dhillon, R., Di Salvo, R., Dilks, C., Dixit, D., Dobbs, S., Dong, X., Drachenberg, J., Drees, A., Dupre, R., Durham, M., Dzhygadlo, R., Fassi, L. El, Elia, D., Epple, E., Esha, R., Evdokimov, O., Eyser, O., Falchieri, D., Fan, W., Fantini, A., Fatemi, R., Fazio, S., Fegan, S., Filippi, A., Fox, H., Francisco, A., Freeze, A., Furletov, S., Furletova, Y., Gal, C., Gardner, S., Garg, P., Gaskell, D., Gates, K., Gericke, M. T. W., Geurts, F., Ghosh, C., Giacalone, M., Giacomini, F., Gilchrist, S., Glazier, D., Gnanvo, K., Gonella, L., Greiner, L. C., Guerrini, N., Guo, L., Gupta, A., Gupta, R., Guryn, W., He, X., Hemmick, T., Heppelmann, S., Higinbotham, D., Hoballah, M., Hoghmrtsyan, A., Hohlmann, M., Horn, T., Hornidge, D., Huang, H. Z., Hyde, C. E., Iapozzuto, P., Idzik, M., Jacak, B. V., Jadhav, M., Jain, S., Jena, C., Jentsch, A., Ji, Y., Ji, Z., Jia, J., Jones, P. G., Jones, R. W. I., Joosten, S., Joshi, S., Kabir, L., Kalicy, G., Karyan, G., Kashyap, V. K. S., Kawall, D., Ke, H., Kelsey, M., Kim, J., Kiryluk, J., Kiselev, A., Klein, S. R., Klest, H., Kochar, V., Korsch, W., Kosarzewski, L., Kotzinian, A., Krizek, F., Kumar, A., Kumar, K. S., Kumar, L., Kumar, R., Kumar, S., Kunnath, A., Kushawaha, N., Lacey, R., Lai, Y. S., Lalwani, K., Landgraf, J., Lanza, L., Lattuada, D., Lavinsky, M., Lee, J. H., Lee, S. H., Lemmon, R., Lestone, A., Lewis, N., Li, H., Li, S., Li, W., Li, X., Liang, X., Ligonzo, T., Lin, T., Liu, J., Liu, K., Liu, M., Livingston, K., Liyanage, N., Ljubicic, T., Long, O., Lukow, N., Ma, Y., Mammei, J., Mammoliti, F., Mamo, K., Mandjavidze, I., Maple, S., Marchand, D., Margotti, A., Markert, C., Markowitz, P., Marshall, T., Martin, A., Marukyan, H., Mastroserio, A., Mathew, S., Mayilyan, S., Mayri, C., McEneaney, M., Mei, Y., Meng, L., Meot, F., Metcalfe, J., Meziani, Z. -E., Mihir, P., Milton, R., Mirabella, A., Mirazita, M., Mkrtchyan, A., Mkrtchyan, H., Mohanty, B., Mondal, M., Morreale, A., Movsisyan, A., Muenstermann, D., Mukherjee, A., Camacho, C. Munoz, Murray, M. J., Mustafa, H., Myska, M., Nachman, B. P., Nagai, K., Naik, R., Naim, J. P., Nam, J., Nandi, B., Nappi, E., Nasim, Md., Neff, D., Neiret, D., Newman, P. R., Nguyen, M., Niccolai, S., Nie, M., Noferini, F., Norman, J., Noto, F., Nunes, A. S., O'Connor, T., Odyniec, G., Okorokov, V. A., Osipenko, M., Page, B., Palatchi, C., Palmer, D., Palni, P., Pandey, S., Panzieri, D., Park, S., Paschke, K., Pastore, C., Patra, R. N., Paul, A., Paul, S., Pecar, C., Peck, A., Pegg, I., Pellegrino, C., Peng, C., Pentchev, L., Perrino, R., Piotrzkowski, K., Polakovic, T., Ploskon, M., Posik, M., Prasad, S., Preghenella, R., Priens, S., Prifti, E., Przybycien, M., Pujahari, P., Quintero, A., Radici, M., Radhakrishnan, S. K., Rahman, S., Rathi, S., Raue, B., Reed, R., Reimer, P., Reinhold, J., Renner, E., Rignanese, L., Ripani, M., Rizzo, A., Romanov, D., Roy, A., Rubini, N., Ruspa, M., Ruan, L., Sabatie, F., Sadhukhan, S., Sahoo, N., Sahu, P., Samuel, D., Sarkar, A., Sarsour, M., Schmidke, W., Schmookler, B., Schwarz, C., Schwiening, J., Scott, M., Sedgwick, I., Segreti, M., Sekula, S., Seto, R., Shah, N., Shahinyan, A., Sharma, D., Sharma, N., Sichtermann, E. P., Signori, A., Singh, A., Singh, B. K., Singh, S. N., Smirnov, N., Sokhan, D., Soltz, R., Sondheim, W., Spinali, S., Stacchi, F., Staszewski, R., Stepanov, P., Strazzi, S., Stroe, I. R., Sun, X., Surrow, B., Sweger, Z., Symons, T. J., Tadevosyan, V., Tang, A., Tassi, E., Teodorescu, L., Tessarotto, F., Thomas, D., Thomas, J. H., Toll, T., Tomasek, L., Torales-Acosta, F., Tribedy, P., Triloki, Tripathi, V., Trotta, R., Trzebiński, M., Trzeciak, B. A., Tsai, O., Tu, Z., Turrisi, R., Tuve, C., Ullrich, T., Urciuoli, G. M., Valentini, A., Vallarino, S., Vandenbroucke, M., Vanek, J., Vino, G., Volpe, G., Voskanyan, H., Vossen, A., Voutier, E., Wang, G., Wang, Y., Watts, D., Wickramaarachchi, N., Wilson, F., Wong, C. -P., Wu, X., Wu, Y., Xie, J., Xu, Q. -H., Xu, Z., Xu, Z. W., Yang, C., Yang, Q., Yang, Y., Ye, Z., Yi, L., Yin, Z., Yurov, M., Zachariou, N., Zhang, J., Zhang, Y., Zhang, Z., Zhao, Y., Zhao, Y. X., Zhao, Z., Zheng, L., Zurek, M.
Publikováno v:
JINST 17 (2022) 10, P10019
ATHENA has been designed as a general purpose detector capable of delivering the full scientific scope of the Electron-Ion Collider. Careful technology choices provide fine tracking and momentum resolution, high performance electromagnetic and hadron
Externí odkaz:
http://arxiv.org/abs/2210.09048
Autor:
McEneaney, Matthew
Using the self-analyzing decay of the $\Lambda$, the longitudinal spin transfer $D_{LL'}$ to the hyperon from a polarized electron beam scattering off an unpolarized proton target can be determined. For $\Lambda$s produced in the current fragmentatio
Externí odkaz:
http://arxiv.org/abs/2201.06480
Connections between the principle of stationary action and optimal control, and between established notions of minimax and viscosity solutions, are combined to describe trajectories of energy conserving systems as solutions of corresponding Cauchy pr
Externí odkaz:
http://arxiv.org/abs/2002.08058