Zobrazeno 1 - 10
of 249
pro vyhledávání: '"McCulloch, I. P."'
Autor:
Markina, A., Lin, K. -H., Liu, W., Poelking, C., Firdaus, Y., Villalva, D. R., Khan, J. I., Paleti, S. H. K., Harrison, G. T., Gorenflot, J., Zhang, W., De Wolf, S., McCulloch, I., Anthopoulos, T. D., Baran, D., Laquai, F., Andrienko, D.
Publikováno v:
Adv. Energy Mater., 2102363, 2-11, 2021
Efficiencies of organic solar cells have practically doubled since the development of non-fullerene acceptors (NFAs). However, generic chemical design rules for donor-NFA combinations are still needed. Such rules are proposed by analyzing inhomogeneo
Externí odkaz:
http://arxiv.org/abs/2201.11626
Autor:
Simmons, S. A., Bayocboc, Jr., F. A., Pillay, J. C., Colas, D., McCulloch, I. P., Kheruntsyan, K. V.
Publikováno v:
Phys. Rev. Lett. 125, 180401 (2020)
Shock waves are examples of the far-from-equilibrium behaviour of matter; they are ubiquitous in nature, yet the underlying microscopic mechanisms behind their formation are not well understood. Here, we study the dynamics of dispersive quantum shock
Externí odkaz:
http://arxiv.org/abs/2006.15326
Publikováno v:
Phys. Rev. B 97, 235155 (2018)
We develop variational matrix product state (MPS) methods with symmetries to determine dispersion relations of one dimensional quantum lattices as a function of momentum and preset quantum number. We test our methods on the XXZ spin chain, the Hubbar
Externí odkaz:
http://arxiv.org/abs/1802.07197
Publikováno v:
Phys. Rev. B 97, 155116 (2018)
Obtaining quantitative ground-state behavior for geometrically-frustrated quantum magnets with long-range interactions is challenging for numerical methods. Here, we demonstrate that the ground states of these systems on two-dimensional lattices can
Externí odkaz:
http://arxiv.org/abs/1802.00422
Autor:
Saadatmand, S. N., McCulloch, I. P.
Publikováno v:
Phys. Rev. B 96, 075117 (2017)
We present new numerical tools to analyze symmetry-broken phases in the context of $SU(2)$-symmetric translation-invariant matrix product states (MPS) and density-matrix renormalization-group (DMRG) methods for infinite cylinders, and determine the p
Externí odkaz:
http://arxiv.org/abs/1704.03418
Publikováno v:
Phys. Rev. B 96, 014524 (2017)
We study hard core bosons on a two leg ladder lattice under the orbital effect of a uniform magnetic field. At densities which are incommensurate with flux, the ground state is a Meissner state, or a vortex state, depending on the strength of the flu
Externí odkaz:
http://arxiv.org/abs/1612.05134
Publikováno v:
Phys. Rev. B 95, 035129 (2017)
Matrix Product Operators (MPOs) are at the heart of the second-generation Density Matrix Renormalisation Group (DMRG) algorithm formulated in Matrix Product State language. We first summarise the widely known facts on MPO arithmetic and representatio
Externí odkaz:
http://arxiv.org/abs/1611.02498
Publikováno v:
Phys. Rev. A 94, 063628 (2016)
We study the quantum phases of bosons with repulsive contact interactions on a two-leg ladder in the presence of a uniform Abelian gauge field. The model realizes many interesting states, including Meissner phases, vortex-fluids, vortex-lattices, cha
Externí odkaz:
http://arxiv.org/abs/1610.02435
Publikováno v:
Phys. Rev. B 94, 214418 (2016)
We demonstrate the existence of an insulating phase in the three-legged Hubbard ladder at two-thirds filling. In this phase chargons are bound because the physics within a unit cell favors the formation of triplets. The resultant moments lead to a gr
Externí odkaz:
http://arxiv.org/abs/1606.04297
Autor:
Saadatmand, S. N., McCulloch, I. P.
Publikováno v:
Phys. Rev. B 94, 121111 (2016)
Using density-matrix renormalization-group calculations for infinite cylinders, we elucidate the properties of the spin-liquid phase of the spin-$\frac{1}{2}$ $J_1$-$J_2$ Heisenberg model on the triangular lattice. We find four distinct ground-states
Externí odkaz:
http://arxiv.org/abs/1606.00334