Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Mayoue, Aurélien"'
Autor:
Montesuma, Eduardo Fernandes, Castellon, Fabiola Espinoza, Mboula, Fred Ngolè, Mayoue, Aurélien, Souloumiac, Antoine, Gouy-Pailler, Cédric
Multi-Source Domain Adaptation (MSDA) is a challenging scenario where multiple related and heterogeneous source datasets must be adapted to an unlabeled target dataset. Conventional MSDA methods often overlook that data holders may have privacy conce
Externí odkaz:
http://arxiv.org/abs/2407.11647
Autor:
Boitier, William, Del Pozzo, Antonella, García-Pérez, Álvaro, Gazut, Stephane, Jobic, Pierre, Lemaire, Alexis, Mahe, Erwan, Mayoue, Aurelien, Perion, Maxence, Rezende, Tuanir Franca, Singh, Deepika, Tucci-Piergiovanni, Sara
Federated Learning is a decentralized framework that enables multiple clients to collaboratively train a machine learning model under the orchestration of a central server without sharing their local data. The centrality of this framework represents
Externí odkaz:
http://arxiv.org/abs/2406.03608
Autor:
Castellon, Fabiola Espinoza, Montesuma, Eduardo Fernandes, Mboula, Fred Ngolè, Mayoue, Aurélien, Souloumiac, Antoine, Gouy-Pailler, Cédric
In this article, we propose an approach for federated domain adaptation, a setting where distributional shift exists among clients and some have unlabeled data. The proposed framework, FedDaDiL, tackles the resulting challenge through dictionary lear
Externí odkaz:
http://arxiv.org/abs/2309.07670
Autor:
Castellon, Fabiola Espinoza, Mayoue, Aurelien, Sublemontier, Jacques-Henri, Gouy-Pailler, Cedric
Federated learning enables different parties to collaboratively build a global model under the orchestration of a server while keeping the training data on clients' devices. However, performance is affected when clients have heterogeneous data. To co
Externí odkaz:
http://arxiv.org/abs/2206.08752
Publikováno v:
Clefs CEA (English); nov2019, Issue 69, p26-29, 4p
Publikováno v:
SSP 2012, IEEE Statistical Signal Processing Workshop, August 5-8, 2012, Ann Harbour, United States
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1093::cbb33fd3d51f628a1df8aa8dce66bf2c
http://www.eurecom.fr/publication/3813
http://www.eurecom.fr/publication/3813
Autor:
Veignal Florian, Minot Benoit, Mayoue Aurélien, Barthet Christelle, Besnard Stéphanie, Frenois Celine, Rousier Rodrigue, Pereira Franck
Publikováno v:
IEEE Xplore
SENSORS, 2014 IEEE
SENSORS, 2014 IEEE, Nov 2014, Valencia, Spain. pp.6985186, ⟨10.1109/ICSENS.2014.6985186⟩
SENSORS, 2014 IEEE
SENSORS, 2014 IEEE, Nov 2014, Valencia, Spain. pp.6985186, ⟨10.1109/ICSENS.2014.6985186⟩
International audience; This paper depicts the performances of a multi-sensor prototype on explosive vapor detection. The responses of the device in laboratory conditions but also in real life conditions were evaluated. Explosive precursors, explosiv
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b417b017e79460d52916bf719e5310e0
https://hal.science/hal-01905665
https://hal.science/hal-01905665
Publikováno v:
2011-GRETSI-Actes de Colloque
XXIIIème colloque GRETSI (GRETSI 2011)
XXIIIème colloque GRETSI (GRETSI 2011), Sep 2011, Bordeaux, France. pp.ID134
GRETSI 2011-XXIIIème Colloque francophone de traitement du signal et des images
GRETSI 2011-XXIIIème Colloque francophone de traitement du signal et des images, Sep 2011, Bordeaux, France. pp.ID134
XXIIIème colloque GRETSI (GRETSI 2011)
XXIIIème colloque GRETSI (GRETSI 2011), Sep 2011, Bordeaux, France. pp.ID134
GRETSI 2011-XXIIIème Colloque francophone de traitement du signal et des images
GRETSI 2011-XXIIIème Colloque francophone de traitement du signal et des images, Sep 2011, Bordeaux, France. pp.ID134
National audience; This article presents a new tool, Multivariate Dictionary Learning Algorithm, able to learn online the elementary structures associated to a multivariate signals set. Once learned, Multivariate Orthogonal Matching Pursuit codes spa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::c49db3619c303692a62a161f1753aae3
https://hal.archives-ouvertes.fr/hal-00625549/document
https://hal.archives-ouvertes.fr/hal-00625549/document
Publikováno v:
Guide to Biometric Reference Systems and Performance Evaluation
Dijana Petrovska and Gérard Chollet. Guide to Biometric Reference Systems and Performance Evaluation, Springer Verlag, 2009
Dijana Petrovska and Gérard Chollet. Guide to Biometric Reference Systems and Performance Evaluation, Springer Verlag, 2009
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::4063dfe3e328cc2fa5f20679c12dbcf3
https://hal.archives-ouvertes.fr/hal-01987799
https://hal.archives-ouvertes.fr/hal-01987799
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.