Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Maxwell L. Silva"'
Publikováno v:
Electronic Journal of Differential Equations, Vol 2023, Iss 23,, Pp 1-11 (2023)
Externí odkaz:
https://doaj.org/article/0a2663c1cd47477d9b323c60aa497976
Autor:
Elves A. B. Silva, Maxwell L. Silva
Publikováno v:
Electronic Journal of Differential Equations, Vol 2013, Iss 239,, Pp 1-17 (2013)
We consider the superlinear elliptic problem $$ -\Delta u + m(x)u = a(x)u^p $$ in a bounded smooth domain under Neumann boundary conditions, where $m \in L^{\sigma}(\Omega)$, $\sigma\geq N/2$ and $a\in C(\overline{\Omega})$ is a sign changing fu
Externí odkaz:
https://doaj.org/article/0fb3f36e0b234d4ab83e2b9413b72be3
Publikováno v:
Computers & Mathematics with Applications. 79:889-907
In this work we consider the following class of quasilinear coupled systems − Δ u + a ( x ) u − Δ ( u 2 ) u = g ( u ) + θ α λ ( x ) | u | α − 2 u | v | β , x ∈ R N , − Δ v + b ( x ) v − Δ ( v 2 ) v = h ( v ) + θ β λ ( x ) | v
Publikováno v:
Potential Analysis. 53:1097-1122
We establish existence and multiplicity of solutions for the elliptic quasilinear Schrodinger equation $$ -\text{div}(g^{2}(u)\nabla u) +g(u)g^{\prime}(u)|\nabla u|^{2}+ V(x)u = h(x,u), x \in \mathbb{R}^{N}, $$ where g is a suitable function, V is a
Publikováno v:
Journal of Mathematical Physics. 61:091501
In this work, we are concerned with the existence and nonexistence of ground state solutions for the following class of quasilinear Schrodinger coupled systems taking into account periodic or asymptotically periodic potentials. The nonlinear terms ar
We study the existence and nonexistence results for a class of linearly coupled Choquard system in critical cases.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4c46235c0403954390c1fbf1cb157970
Publikováno v:
Advanced Nonlinear Studies. 14:671-686
We deal with the existence of nonzero solution for the quasilinear Schrödinger equation −Δu + V(x)u − Δ(u2)u = g(x, u), x ∈ ℝN, u ∈ H1(ℝN), where V is a positive potential and the nonlinearity g(x, s) behaves like K0(x)s at the origin
Publikováno v:
Zeitschrift für angewandte Mathematik und Physik. 66:277-291
We obtain existence and multiplicity of solutions for the quasilinear Schrodinger equation $$-\Delta u + V(x)u - \Delta(u^2)u = g(x,u), \,\, x \in \mathbb{R}^N,$$ where V is a positive potential and the nonlinearity g(x, t) behaves like t at the orig
Publikováno v:
Journal of Mathematical Analysis and Applications. 384(2):387-399
A result on existence of positive solution for a fourth order nonlinear elliptic equation under Navier boundary conditions is established. The nonlinear term involved is asymptotically linear both at the origin and at infinity. We exploit topological
Publikováno v:
Journal of Mathematical Physics. 58:031503
It establishes existence and multiplicity of solutions to the elliptic quasilinear Schrodinger equation −div(g2(u)∇u)+g(u)g′(u)|∇u|2+V(x)u=h(x,u),x∈ℝN,where g, h, V are suitable smooth functions. The function g is asymptotically linear at