Zobrazeno 1 - 10
of 2 258
pro vyhledávání: '"Maximum Common Subgraph"'
Autor:
Guidobene, Davide, Cera, Guido
The Maximum Common Subgraph (MCS) problem plays a crucial role across various domains, bridging theoretical exploration and practical applications in fields like bioinformatics and social network analysis. Despite its wide applicability, MCS is notor
Externí odkaz:
http://arxiv.org/abs/2403.08703
Autor:
Vladimir V. Vasilchikov
Publikováno v:
Моделирование и анализ информационных систем, Vol 30, Iss 2, Pp 128-139 (2023)
The paper proposes an algorithm for solving the problem of finding the maximum common subgraph. Both the sequential and the parallel version of the algorithm, their software implementation are described, and an experimental study of their effectivene
Externí odkaz:
https://doaj.org/article/df0f662e24a24c668baa2863b854b9e8
Publikováno v:
NeurIPS 2022
The graph retrieval problem is to search in a large corpus of graphs for ones that are most similar to a query graph. A common consideration for scoring similarity is the maximum common subgraph (MCS) between the query and corpus graphs, usually coun
Externí odkaz:
http://arxiv.org/abs/2210.11020
Graph similarity measurement, which computes the distance/similarity between two graphs, arises in various graph-related tasks. Recent learning-based methods lack interpretability, as they directly transform interaction information between two graphs
Externí odkaz:
http://arxiv.org/abs/2208.04580
Maximum Common induced Subgraph (MCS) is an important NP-hard problem with wide real-world applications. Branch-and-Bound (BnB) is the basis of a class of efficient algorithms for MCS, consisting in successively selecting vertices to match and prunin
Externí odkaz:
http://arxiv.org/abs/2208.08620
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Detecting the Maximum Common Subgraph (MCS) between two input graphs is fundamental for applications in drug synthesis, malware detection, cloud computing, etc. However, MCS computation is NP-hard, and state-of-the-art MCS solvers rely on heuristic s
Externí odkaz:
http://arxiv.org/abs/2002.03129
The Maximum Common Subgraph is a computationally challenging problem with countless practical applications. Even if it has been long proven NP-hard, its importance still motivates searching for exact solutions. This work starts by discussing the poss
Externí odkaz:
http://arxiv.org/abs/1908.06418
Branch-and-bound (BnB) algorithms are widely used to solve combinatorial problems, and the performance crucially depends on its branching heuristic.In this work, we consider a typical problem of maximum common subgraph (MCS), and propose a branching
Externí odkaz:
http://arxiv.org/abs/1905.05840
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.